123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2015, Itseez Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- #define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE 1
- #define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF 2
- #define CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF 3
- #define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK 4
- #define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF 5
- #define MESSAGE_MATRIX_SIZE "Homography matrix must have 3*3 sizes."
- #define MESSAGE_MATRIX_DIFF "Accuracy of homography transformation matrix less than required."
- #define MESSAGE_REPROJ_DIFF_1 "Reprojection error for current pair of points more than required."
- #define MESSAGE_REPROJ_DIFF_2 "Reprojection error is not optimal."
- #define MESSAGE_RANSAC_MASK_1 "Sizes of inliers/outliers mask are incorrect."
- #define MESSAGE_RANSAC_MASK_2 "Mask mustn't have any outliers."
- #define MESSAGE_RANSAC_MASK_3 "All values of mask must be 1 (true) or 0 (false)."
- #define MESSAGE_RANSAC_MASK_4 "Mask of inliers/outliers is incorrect."
- #define MESSAGE_RANSAC_MASK_5 "Inlier in original mask shouldn't be outlier in found mask."
- #define MESSAGE_RANSAC_DIFF "Reprojection error for current pair of points more than required."
- #define MAX_COUNT_OF_POINTS 303
- #define MIN_COUNT_OF_POINTS 4
- #define COUNT_NORM_TYPES 3
- #define METHODS_COUNT 4
- int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};
- int METHOD[METHODS_COUNT] = {0, cv::RANSAC, cv::LMEDS, cv::RHO};
- using namespace cv;
- using namespace std;
- class CV_HomographyTest: public cvtest::ArrayTest
- {
- public:
- CV_HomographyTest();
- ~CV_HomographyTest();
- void run (int);
- protected:
- int method;
- int image_size;
- double reproj_threshold;
- double sigma;
- private:
- float max_diff, max_2diff;
- bool check_matrix_size(const cv::Mat& H);
- bool check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff);
- int check_ransac_mask_1(const Mat& src, const Mat& mask);
- int check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask);
- void print_information_1(int j, int N, int method, const Mat& H);
- void print_information_2(int j, int N, int method, const Mat& H, const Mat& H_res, int k, double diff);
- void print_information_3(int method, int j, int N, const Mat& mask);
- void print_information_4(int method, int j, int N, int k, int l, double diff);
- void print_information_5(int method, int j, int N, int l, double diff);
- void print_information_6(int method, int j, int N, int k, double diff, bool value);
- void print_information_7(int method, int j, int N, int k, double diff, bool original_value, bool found_value);
- void print_information_8(int method, int j, int N, int k, int l, double diff);
- };
- CV_HomographyTest::CV_HomographyTest() : max_diff(1e-2f), max_2diff(2e-2f)
- {
- method = 0;
- image_size = 100;
- reproj_threshold = 3.0;
- sigma = 0.01;
- }
- CV_HomographyTest::~CV_HomographyTest() {}
- bool CV_HomographyTest::check_matrix_size(const cv::Mat& H)
- {
- return (H.rows == 3) && (H.cols == 3);
- }
- bool CV_HomographyTest::check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff)
- {
- diff = cvtest::norm(original, found, norm_type);
- return diff <= max_diff;
- }
- int CV_HomographyTest::check_ransac_mask_1(const Mat& src, const Mat& mask)
- {
- if (!(mask.cols == 1) && (mask.rows == src.cols)) return 1;
- if (countNonZero(mask) < mask.rows) return 2;
- for (int i = 0; i < mask.rows; ++i) if (mask.at<uchar>(i, 0) > 1) return 3;
- return 0;
- }
- int CV_HomographyTest::check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask)
- {
- if (!(found_mask.cols == 1) && (found_mask.rows == original_mask.rows)) return 1;
- for (int i = 0; i < found_mask.rows; ++i) if (found_mask.at<uchar>(i, 0) > 1) return 2;
- return 0;
- }
- void CV_HomographyTest::print_information_1(int j, int N, int _method, const Mat& H)
- {
- cout << endl; cout << "Checking for homography matrix sizes..." << endl; cout << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Count of points: " << N << endl; cout << endl;
- cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl;
- cout << "Homography matrix:" << endl; cout << endl;
- cout << H << endl; cout << endl;
- cout << "Number of rows: " << H.rows << " Number of cols: " << H.cols << endl; cout << endl;
- }
- void CV_HomographyTest::print_information_2(int j, int N, int _method, const Mat& H, const Mat& H_res, int k, double diff)
- {
- cout << endl; cout << "Checking for accuracy of homography matrix computing..." << endl; cout << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Count of points: " << N << endl; cout << endl;
- cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl;
- cout << "Original matrix:" << endl; cout << endl;
- cout << H << endl; cout << endl;
- cout << "Found matrix:" << endl; cout << endl;
- cout << H_res << endl; cout << endl;
- cout << "Norm type using in criteria: "; if (NORM_TYPE[k] == 1) cout << "INF"; else if (NORM_TYPE[k] == 2) cout << "L1"; else cout << "L2"; cout << endl;
- cout << "Difference between matrices: " << diff << endl;
- cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
- }
- void CV_HomographyTest::print_information_3(int _method, int j, int N, const Mat& mask)
- {
- cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Count of points: " << N << endl; cout << endl;
- cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
- cout << "Found mask:" << endl; cout << endl;
- cout << mask << endl; cout << endl;
- cout << "Number of rows: " << mask.rows << " Number of cols: " << mask.cols << endl; cout << endl;
- }
- void CV_HomographyTest::print_information_4(int _method, int j, int N, int k, int l, double diff)
- {
- cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl;
- cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Sigma of normal noise: " << sigma << endl;
- cout << "Count of points: " << N << endl;
- cout << "Number of point: " << k << endl;
- cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
- cout << "Difference with noise of point: " << diff << endl;
- cout << "Maximum allowed difference: " << max_2diff << endl; cout << endl;
- }
- void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, double diff)
- {
- cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl;
- cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Sigma of normal noise: " << sigma << endl;
- cout << "Count of points: " << N << endl;
- cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
- cout << "Difference with noise of points: " << diff << endl;
- cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
- }
- void CV_HomographyTest::print_information_6(int _method, int j, int N, int k, double diff, bool value)
- {
- cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
- cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Count of points: " << N << " " << endl;
- cout << "Number of point: " << k << " " << endl;
- cout << "Reprojection error for this point: " << diff << " " << endl;
- cout << "Reprojection error threshold: " << reproj_threshold << " " << endl;
- cout << "Value of found mask: "<< value << endl; cout << endl;
- }
- void CV_HomographyTest::print_information_7(int _method, int j, int N, int k, double diff, bool original_value, bool found_value)
- {
- cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
- cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Count of points: " << N << " " << endl;
- cout << "Number of point: " << k << " " << endl;
- cout << "Reprojection error for this point: " << diff << " " << endl;
- cout << "Reprojection error threshold: " << reproj_threshold << " " << endl;
- cout << "Value of original mask: "<< original_value << " Value of found mask: " << found_value << endl; cout << endl;
- }
- void CV_HomographyTest::print_information_8(int _method, int j, int N, int k, int l, double diff)
- {
- cout << endl; cout << "Checking for reprojection error of inlier..." << endl; cout << endl;
- cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
- cout << "Sigma of normal noise: " << sigma << endl;
- cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
- cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
- cout << "Count of points: " << N << " " << endl;
- cout << "Number of point: " << k << " " << endl;
- cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
- cout << "Difference with noise of point: " << diff << endl;
- cout << "Maximum allowed difference: " << max_2diff << endl; cout << endl;
- }
- void CV_HomographyTest::run(int)
- {
- for (int N = MIN_COUNT_OF_POINTS; N <= MAX_COUNT_OF_POINTS; ++N)
- {
- RNG& rng = ts->get_rng();
- float *src_data = new float [2*N];
- for (int i = 0; i < N; ++i)
- {
- src_data[2*i] = (float)cvtest::randReal(rng)*image_size;
- src_data[2*i+1] = (float)cvtest::randReal(rng)*image_size;
- }
- cv::Mat src_mat_2f(1, N, CV_32FC2, src_data),
- src_mat_2d(2, N, CV_32F, src_data),
- src_mat_3d(3, N, CV_32F);
- cv::Mat dst_mat_2f, dst_mat_2d, dst_mat_3d;
- vector <Point2f> src_vec, dst_vec;
- for (int i = 0; i < N; ++i)
- {
- float *tmp = src_mat_2d.ptr<float>()+2*i;
- src_mat_3d.at<float>(0, i) = tmp[0];
- src_mat_3d.at<float>(1, i) = tmp[1];
- src_mat_3d.at<float>(2, i) = 1.0f;
- src_vec.push_back(Point2f(tmp[0], tmp[1]));
- }
- double fi = cvtest::randReal(rng)*2*CV_PI;
- double t_x = cvtest::randReal(rng)*sqrt(image_size*1.0),
- t_y = cvtest::randReal(rng)*sqrt(image_size*1.0);
- double Hdata[9] = { cos(fi), -sin(fi), t_x,
- sin(fi), cos(fi), t_y,
- 0.0f, 0.0f, 1.0f };
- cv::Mat H_64(3, 3, CV_64F, Hdata), H_32;
- H_64.convertTo(H_32, CV_32F);
- dst_mat_3d = H_32*src_mat_3d;
- dst_mat_2d.create(2, N, CV_32F); dst_mat_2f.create(1, N, CV_32FC2);
- for (int i = 0; i < N; ++i)
- {
- float *tmp_2f = dst_mat_2f.ptr<float>()+2*i;
- tmp_2f[0] = dst_mat_2d.at<float>(0, i) = dst_mat_3d.at<float>(0, i) /= dst_mat_3d.at<float>(2, i);
- tmp_2f[1] = dst_mat_2d.at<float>(1, i) = dst_mat_3d.at<float>(1, i) /= dst_mat_3d.at<float>(2, i);
- dst_mat_3d.at<float>(2, i) = 1.0f;
- dst_vec.push_back(Point2f(tmp_2f[0], tmp_2f[1]));
- }
- for (int i = 0; i < METHODS_COUNT; ++i)
- {
- method = METHOD[i];
- switch (method)
- {
- case 0:
- case LMEDS:
- {
- Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method),
- cv::findHomography(src_mat_2f, dst_vec, method),
- cv::findHomography(src_vec, dst_mat_2f, method),
- cv::findHomography(src_vec, dst_vec, method) };
- for (int j = 0; j < 4; ++j)
- {
- if (!check_matrix_size(H_res_64[j]))
- {
- print_information_1(j, N, method, H_res_64[j]);
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
- return;
- }
- double diff;
- for (int k = 0; k < COUNT_NORM_TYPES; ++k)
- if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff))
- {
- print_information_2(j, N, method, H_64, H_res_64[j], k, diff);
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF);
- return;
- }
- }
- continue;
- }
- case cv::RHO:
- case RANSAC:
- {
- cv::Mat mask [4]; double diff;
- Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask[0]),
- cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask[1]),
- cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask[2]),
- cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask[3]) };
- for (int j = 0; j < 4; ++j)
- {
- if (!check_matrix_size(H_res_64[j]))
- {
- print_information_1(j, N, method, H_res_64[j]);
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
- return;
- }
- for (int k = 0; k < COUNT_NORM_TYPES; ++k)
- if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff))
- {
- print_information_2(j, N, method, H_64, H_res_64[j], k, diff);
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF);
- return;
- }
- int code = check_ransac_mask_1(src_mat_2f, mask[j]);
- if (code)
- {
- print_information_3(method, j, N, mask[j]);
- switch (code)
- {
- case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; }
- case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_2); break; }
- case 3: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; }
- default: break;
- }
- return;
- }
- }
- continue;
- }
- default: continue;
- }
- }
- Mat noise_2f(1, N, CV_32FC2);
- rng.fill(noise_2f, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma));
- cv::Mat mask(N, 1, CV_8UC1);
- for (int i = 0; i < N; ++i)
- {
- float *a = noise_2f.ptr<float>()+2*i, *_2f = dst_mat_2f.ptr<float>()+2*i;
- _2f[0] += a[0]; _2f[1] += a[1];
- mask.at<bool>(i, 0) = !(sqrt(a[0]*a[0]+a[1]*a[1]) > reproj_threshold);
- }
- for (int i = 0; i < METHODS_COUNT; ++i)
- {
- method = METHOD[i];
- switch (method)
- {
- case 0:
- case LMEDS:
- {
- Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f),
- cv::findHomography(src_mat_2f, dst_vec),
- cv::findHomography(src_vec, dst_mat_2f),
- cv::findHomography(src_vec, dst_vec) };
- for (int j = 0; j < 4; ++j)
- {
- if (!check_matrix_size(H_res_64[j]))
- {
- print_information_1(j, N, method, H_res_64[j]);
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
- return;
- }
- Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F);
- cv::Mat dst_res_3d(3, N, CV_32F), noise_2d(2, N, CV_32F);
- for (int k = 0; k < N; ++k)
- {
- Mat tmp_mat_3d = H_res_32*src_mat_3d.col(k);
- dst_res_3d.at<float>(0, k) = tmp_mat_3d.at<float>(0, 0) /= tmp_mat_3d.at<float>(2, 0);
- dst_res_3d.at<float>(1, k) = tmp_mat_3d.at<float>(1, 0) /= tmp_mat_3d.at<float>(2, 0);
- dst_res_3d.at<float>(2, k) = tmp_mat_3d.at<float>(2, 0) = 1.0f;
- float *a = noise_2f.ptr<float>()+2*k;
- noise_2d.at<float>(0, k) = a[0]; noise_2d.at<float>(1, k) = a[1];
- for (int l = 0; l < COUNT_NORM_TYPES; ++l)
- if (cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]) > max_2diff)
- {
- print_information_4(method, j, N, k, l, cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]));
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_1);
- return;
- }
- }
- for (int l = 0; l < COUNT_NORM_TYPES; ++l)
- if (cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]) > max_diff)
- {
- print_information_5(method, j, N, l, cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]));
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_2);
- return;
- }
- }
- continue;
- }
- case cv::RHO:
- case RANSAC:
- {
- cv::Mat mask_res [4];
- Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask_res[0]),
- cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask_res[1]),
- cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask_res[2]),
- cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask_res[3]) };
- for (int j = 0; j < 4; ++j)
- {
- if (!check_matrix_size(H_res_64[j]))
- {
- print_information_1(j, N, method, H_res_64[j]);
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
- return;
- }
- int code = check_ransac_mask_2(mask, mask_res[j]);
- if (code)
- {
- print_information_3(method, j, N, mask_res[j]);
- switch (code)
- {
- case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; }
- case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; }
- default: break;
- }
- return;
- }
- cv::Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F);
- cv::Mat dst_res_3d = H_res_32*src_mat_3d;
- for (int k = 0; k < N; ++k)
- {
- dst_res_3d.at<float>(0, k) /= dst_res_3d.at<float>(2, k);
- dst_res_3d.at<float>(1, k) /= dst_res_3d.at<float>(2, k);
- dst_res_3d.at<float>(2, k) = 1.0f;
- float *p = dst_mat_2f.ptr<float>()+2*k;
- dst_mat_3d.at<float>(0, k) = p[0];
- dst_mat_3d.at<float>(1, k) = p[1];
- double diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_L2);
- if (mask_res[j].at<bool>(k, 0) != (diff <= reproj_threshold))
- {
- print_information_6(method, j, N, k, diff, mask_res[j].at<bool>(k, 0));
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_4);
- return;
- }
- if (mask.at<bool>(k, 0) && !mask_res[j].at<bool>(k, 0))
- {
- print_information_7(method, j, N, k, diff, mask.at<bool>(k, 0), mask_res[j].at<bool>(k, 0));
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_5);
- return;
- }
- if (mask_res[j].at<bool>(k, 0))
- {
- float *a = noise_2f.ptr<float>()+2*k;
- dst_mat_3d.at<float>(0, k) -= a[0];
- dst_mat_3d.at<float>(1, k) -= a[1];
- cv::Mat noise_2d(2, 1, CV_32F);
- noise_2d.at<float>(0, 0) = a[0]; noise_2d.at<float>(1, 0) = a[1];
- for (int l = 0; l < COUNT_NORM_TYPES; ++l)
- {
- diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_TYPE[l]);
- if (diff - cv::norm(noise_2d, NORM_TYPE[l]) > max_2diff)
- {
- print_information_8(method, j, N, k, l, diff - cv::norm(noise_2d, NORM_TYPE[l]));
- CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF, MESSAGE_RANSAC_DIFF);
- return;
- }
- }
- }
- }
- }
- continue;
- }
- default: continue;
- }
- }
- delete[]src_data;
- src_data = NULL;
- }
- }
- TEST(Calib3d_Homography, accuracy) { CV_HomographyTest test; test.safe_run(); }
- TEST(Calib3d_Homography, EKcase)
- {
- float pt1data[] =
- {
- 2.80073029e+002f, 2.39591217e+002f, 2.21912201e+002f, 2.59783997e+002f,
- 2.16053192e+002f, 2.78826569e+002f, 2.22782532e+002f, 2.82330383e+002f,
- 2.09924820e+002f, 2.89122559e+002f, 2.11077698e+002f, 2.89384674e+002f,
- 2.25287689e+002f, 2.88795532e+002f, 2.11180801e+002f, 2.89653503e+002f,
- 2.24126404e+002f, 2.90466064e+002f, 2.10914429e+002f, 2.90886963e+002f,
- 2.23439362e+002f, 2.91657715e+002f, 2.24809387e+002f, 2.91891602e+002f,
- 2.09809082e+002f, 2.92891113e+002f, 2.08771164e+002f, 2.93093231e+002f,
- 2.23160095e+002f, 2.93259460e+002f, 2.07874023e+002f, 2.93989990e+002f,
- 2.08963638e+002f, 2.94209839e+002f, 2.23963165e+002f, 2.94479645e+002f,
- 2.23241791e+002f, 2.94887817e+002f, 2.09438782e+002f, 2.95233337e+002f,
- 2.08901886e+002f, 2.95762878e+002f, 2.21867981e+002f, 2.95747711e+002f,
- 2.24195511e+002f, 2.98270905e+002f, 2.09331345e+002f, 3.05958191e+002f,
- 2.24727875e+002f, 3.07186035e+002f, 2.26718842e+002f, 3.08095795e+002f,
- 2.25363953e+002f, 3.08200226e+002f, 2.19897797e+002f, 3.13845093e+002f,
- 2.25013474e+002f, 3.15558777e+002f
- };
- float pt2data[] =
- {
- 1.84072723e+002f, 1.43591202e+002f, 1.25912483e+002f, 1.63783859e+002f,
- 2.06439407e+002f, 2.20573929e+002f, 1.43801437e+002f, 1.80703903e+002f,
- 9.77904129e+000f, 2.49660202e+002f, 1.38458405e+001f, 2.14502701e+002f,
- 1.50636337e+002f, 2.15597183e+002f, 6.43103180e+001f, 2.51667648e+002f,
- 1.54952499e+002f, 2.20780014e+002f, 1.26638412e+002f, 2.43040924e+002f,
- 3.67568909e+002f, 1.83624954e+001f, 1.60657944e+002f, 2.21794052e+002f,
- -1.29507828e+000f, 3.32472443e+002f, 8.51442242e+000f, 4.15561554e+002f,
- 1.27161377e+002f, 1.97260361e+002f, 5.40714645e+000f, 4.90978302e+002f,
- 2.25571690e+001f, 3.96912415e+002f, 2.95664978e+002f, 7.36064959e+000f,
- 1.27241104e+002f, 1.98887573e+002f, -1.25569367e+000f, 3.87713226e+002f,
- 1.04194012e+001f, 4.31495758e+002f, 1.25868874e+002f, 1.99751617e+002f,
- 1.28195480e+002f, 2.02270355e+002f, 2.23436356e+002f, 1.80489182e+002f,
- 1.28727692e+002f, 2.11185410e+002f, 2.03336639e+002f, 2.52182083e+002f,
- 1.29366486e+002f, 2.12201904e+002f, 1.23897598e+002f, 2.17847351e+002f,
- 1.29015259e+002f, 2.19560623e+002f
- };
- int npoints = (int)(sizeof(pt1data)/sizeof(pt1data[0])/2);
- Mat p1(1, npoints, CV_32FC2, pt1data);
- Mat p2(1, npoints, CV_32FC2, pt2data);
- Mat mask;
- Mat h = findHomography(p1, p2, RANSAC, 0.01, mask);
- ASSERT_TRUE(!h.empty());
- cv::transpose(mask, mask);
- Mat p3, mask2;
- int ninliers = countNonZero(mask);
- Mat nmask[] = { mask, mask };
- merge(nmask, 2, mask2);
- perspectiveTransform(p1, p3, h);
- mask2 = mask2.reshape(1);
- p2 = p2.reshape(1);
- p3 = p3.reshape(1);
- double err = cvtest::norm(p2, p3, NORM_INF, mask2);
- printf("ninliers: %d, inliers err: %.2g\n", ninliers, err);
- ASSERT_GE(ninliers, 10);
- ASSERT_LE(err, 0.01);
- }
- TEST(Calib3d_Homography, fromImages)
- {
- Mat img_1 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image1.png", 0);
- Mat img_2 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image2.png", 0);
- Ptr<ORB> orb = ORB::create();
- vector<KeyPoint> keypoints_1, keypoints_2;
- Mat descriptors_1, descriptors_2;
- orb->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1, false );
- orb->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2, false );
- //-- Step 3: Matching descriptor vectors using Brute Force matcher
- BFMatcher matcher(NORM_HAMMING,false);
- std::vector< DMatch > matches;
- matcher.match( descriptors_1, descriptors_2, matches );
- double max_dist = 0; double min_dist = 100;
- //-- Quick calculation of max and min distances between keypoints
- for( int i = 0; i < descriptors_1.rows; i++ )
- {
- double dist = matches[i].distance;
- if( dist < min_dist ) min_dist = dist;
- if( dist > max_dist ) max_dist = dist;
- }
- //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
- std::vector< DMatch > good_matches;
- for( int i = 0; i < descriptors_1.rows; i++ )
- {
- if( matches[i].distance <= 100 )
- good_matches.push_back( matches[i]);
- }
- //-- Localize the model
- std::vector<Point2f> pointframe1;
- std::vector<Point2f> pointframe2;
- for( int i = 0; i < (int)good_matches.size(); i++ )
- {
- //-- Get the keypoints from the good matches
- pointframe1.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
- pointframe2.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
- }
- Mat H0, H1, inliers0, inliers1;
- double min_t0 = DBL_MAX, min_t1 = DBL_MAX;
- for( int i = 0; i < 10; i++ )
- {
- double t = (double)getTickCount();
- H0 = findHomography( pointframe1, pointframe2, RANSAC, 3.0, inliers0 );
- t = (double)getTickCount() - t;
- min_t0 = std::min(min_t0, t);
- }
- int ninliers0 = countNonZero(inliers0);
- for( int i = 0; i < 10; i++ )
- {
- double t = (double)getTickCount();
- H1 = findHomography( pointframe1, pointframe2, RHO, 3.0, inliers1 );
- t = (double)getTickCount() - t;
- min_t1 = std::min(min_t1, t);
- }
- int ninliers1 = countNonZero(inliers1);
- double freq = getTickFrequency();
- printf("nfeatures1 = %d, nfeatures2=%d, matches=%d, ninliers(RANSAC)=%d, "
- "time(RANSAC)=%.2fmsec, ninliers(RHO)=%d, time(RHO)=%.2fmsec\n",
- (int)keypoints_1.size(), (int)keypoints_2.size(),
- (int)good_matches.size(), ninliers0, min_t0*1000./freq, ninliers1, min_t1*1000./freq);
- ASSERT_TRUE(!H0.empty());
- ASSERT_GE(ninliers0, 80);
- ASSERT_TRUE(!H1.empty());
- ASSERT_GE(ninliers1, 80);
- }
- TEST(Calib3d_Homography, minPoints)
- {
- float pt1data[] =
- {
- 2.80073029e+002f, 2.39591217e+002f, 2.21912201e+002f, 2.59783997e+002f
- };
- float pt2data[] =
- {
- 1.84072723e+002f, 1.43591202e+002f, 1.25912483e+002f, 1.63783859e+002f
- };
- int npoints = (int)(sizeof(pt1data)/sizeof(pt1data[0])/2);
- printf("npoints = %d\n", npoints); // npoints = 2
- Mat p1(1, npoints, CV_32FC2, pt1data);
- Mat p2(1, npoints, CV_32FC2, pt2data);
- Mat mask;
- // findHomography should raise an error since npoints < MIN_COUNT_OF_POINTS
- EXPECT_THROW(findHomography(p1, p2, RANSAC, 0.01, mask), cv::Exception);
- }
- }} // namespace
|