123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #include "opencv2/core/core_c.h"
- #include "opencv2/calib3d/calib3d_c.h"
- namespace cvtest {
- static int cvTsRodrigues( const CvMat* src, CvMat* dst, CvMat* jacobian )
- {
- int depth;
- int i;
- float Jf[27];
- double J[27];
- CvMat _Jf, matJ = cvMat( 3, 9, CV_64F, J );
- depth = CV_MAT_DEPTH(src->type);
- if( jacobian )
- {
- CV_Assert( (jacobian->rows == 9 && jacobian->cols == 3) ||
- (jacobian->rows == 3 && jacobian->cols == 9) );
- }
- if( src->cols == 1 || src->rows == 1 )
- {
- double r[3], theta;
- CvMat _r = cvMat( src->rows, src->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(src->type)), r);
- CV_Assert( dst->rows == 3 && dst->cols == 3 );
- cvConvert( src, &_r );
- theta = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);
- if( theta < DBL_EPSILON )
- {
- cvSetIdentity( dst );
- if( jacobian )
- {
- memset( J, 0, sizeof(J) );
- J[5] = J[15] = J[19] = 1;
- J[7] = J[11] = J[21] = -1;
- }
- }
- else
- {
- // omega = r/theta (~[w1, w2, w3])
- double itheta = 1./theta;
- double w1 = r[0]*itheta, w2 = r[1]*itheta, w3 = r[2]*itheta;
- double alpha = cos(theta);
- double beta = sin(theta);
- double gamma = 1 - alpha;
- double omegav[] =
- {
- 0, -w3, w2,
- w3, 0, -w1,
- -w2, w1, 0
- };
- double A[] =
- {
- w1*w1, w1*w2, w1*w3,
- w2*w1, w2*w2, w2*w3,
- w3*w1, w3*w2, w3*w3
- };
- double R[9];
- CvMat _omegav = cvMat(3, 3, CV_64F, omegav);
- CvMat matA = cvMat(3, 3, CV_64F, A);
- CvMat matR = cvMat(3, 3, CV_64F, R);
- cvSetIdentity( &matR, cvRealScalar(alpha) );
- cvScaleAdd( &_omegav, cvRealScalar(beta), &matR, &matR );
- cvScaleAdd( &matA, cvRealScalar(gamma), &matR, &matR );
- cvConvert( &matR, dst );
- if( jacobian )
- {
- // m3 = [r, theta]
- double dm3din[] =
- {
- 1, 0, 0,
- 0, 1, 0,
- 0, 0, 1,
- w1, w2, w3
- };
- // m2 = [omega, theta]
- double dm2dm3[] =
- {
- itheta, 0, 0, -w1*itheta,
- 0, itheta, 0, -w2*itheta,
- 0, 0, itheta, -w3*itheta,
- 0, 0, 0, 1
- };
- double t0[9*4];
- double dm1dm2[21*4];
- double dRdm1[9*21];
- CvMat _dm3din = cvMat( 4, 3, CV_64FC1, dm3din );
- CvMat _dm2dm3 = cvMat( 4, 4, CV_64FC1, dm2dm3 );
- CvMat _dm1dm2 = cvMat( 21, 4, CV_64FC1, dm1dm2 );
- CvMat _dRdm1 = cvMat( 9, 21, CV_64FC1, dRdm1 );
- CvMat _dRdm1_part;
- CvMat _t0 = cvMat( 9, 4, CV_64FC1, t0 );
- CvMat _t1 = cvMat( 9, 4, CV_64FC1, dRdm1 );
- // m1 = [alpha, beta, gamma, omegav; A]
- memset( dm1dm2, 0, sizeof(dm1dm2) );
- dm1dm2[3] = -beta;
- dm1dm2[7] = alpha;
- dm1dm2[11] = beta;
- // dm1dm2(4:12,1:3) = [0 0 0 0 0 1 0 -1 0;
- // 0 0 -1 0 0 0 1 0 0;
- // 0 1 0 -1 0 0 0 0 0]'
- // -------------------
- // 0 0 0 0 0 0 0 0 0
- dm1dm2[12 + 6] = dm1dm2[12 + 20] = dm1dm2[12 + 25] = 1;
- dm1dm2[12 + 9] = dm1dm2[12 + 14] = dm1dm2[12 + 28] = -1;
- double dm1dw[] =
- {
- 2*w1, w2, w3, w2, 0, 0, w3, 0, 0,
- 0, w1, 0, w1, 2*w2, w3, 0, w3, 0,
- 0, 0, w1, 0, 0, w2, w1, w2, 2*w3
- };
- CvMat _dm1dw = cvMat( 3, 9, CV_64FC1, dm1dw );
- CvMat _dm1dm2_part;
- cvGetSubRect( &_dm1dm2, &_dm1dm2_part, cvRect(0,12,3,9) );
- cvTranspose( &_dm1dw, &_dm1dm2_part );
- memset( dRdm1, 0, sizeof(dRdm1) );
- dRdm1[0*21] = dRdm1[4*21] = dRdm1[8*21] = 1;
- cvGetCol( &_dRdm1, &_dRdm1_part, 1 );
- cvTranspose( &_omegav, &_omegav );
- cvReshape( &_omegav, &_omegav, 1, 1 );
- cvTranspose( &_omegav, &_dRdm1_part );
- cvGetCol( &_dRdm1, &_dRdm1_part, 2 );
- cvReshape( &matA, &matA, 1, 1 );
- cvTranspose( &matA, &_dRdm1_part );
- cvGetSubRect( &_dRdm1, &_dRdm1_part, cvRect(3,0,9,9) );
- cvSetIdentity( &_dRdm1_part, cvScalarAll(beta) );
- cvGetSubRect( &_dRdm1, &_dRdm1_part, cvRect(12,0,9,9) );
- cvSetIdentity( &_dRdm1_part, cvScalarAll(gamma) );
- matJ = cvMat( 9, 3, CV_64FC1, J );
- cvMatMul( &_dRdm1, &_dm1dm2, &_t0 );
- cvMatMul( &_t0, &_dm2dm3, &_t1 );
- cvMatMul( &_t1, &_dm3din, &matJ );
- _t0 = cvMat( 3, 9, CV_64FC1, t0 );
- cvTranspose( &matJ, &_t0 );
- for( i = 0; i < 3; i++ )
- {
- _t1 = cvMat( 3, 3, CV_64FC1, t0 + i*9 );
- cvTranspose( &_t1, &_t1 );
- }
- cvTranspose( &_t0, &matJ );
- }
- }
- }
- else if( src->cols == 3 && src->rows == 3 )
- {
- double R[9], A[9], I[9], r[3], W[3], U[9], V[9];
- double tr, alpha, beta, theta;
- CvMat matR = cvMat( 3, 3, CV_64F, R );
- CvMat matA = cvMat( 3, 3, CV_64F, A );
- CvMat matI = cvMat( 3, 3, CV_64F, I );
- CvMat _r = cvMat( dst->rows, dst->cols, CV_MAKETYPE(CV_64F, CV_MAT_CN(dst->type)), r );
- CvMat matW = cvMat( 1, 3, CV_64F, W );
- CvMat matU = cvMat( 3, 3, CV_64F, U );
- CvMat matV = cvMat( 3, 3, CV_64F, V );
- cvConvert( src, &matR );
- cvSVD( &matR, &matW, &matU, &matV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
- cvGEMM( &matU, &matV, 1, 0, 0, &matR, CV_GEMM_A_T );
- cvMulTransposed( &matR, &matA, 0 );
- cvSetIdentity( &matI );
- if( cvNorm( &matA, &matI, CV_C ) > 1e-3 ||
- fabs( cvDet(&matR) - 1 ) > 1e-3 )
- return 0;
- tr = (cvTrace(&matR).val[0] - 1.)*0.5;
- tr = tr > 1. ? 1. : tr < -1. ? -1. : tr;
- theta = acos(tr);
- alpha = cos(theta);
- beta = sin(theta);
- if( beta >= 1e-5 )
- {
- double dtheta_dtr = -1./sqrt(1 - tr*tr);
- double vth = 1/(2*beta);
- // om1 = [R(3,2) - R(2,3), R(1,3) - R(3,1), R(2,1) - R(1,2)]'
- double om1[] = { R[7] - R[5], R[2] - R[6], R[3] - R[1] };
- // om = om1*vth
- // r = om*theta
- double d3 = vth*theta;
- r[0] = om1[0]*d3; r[1] = om1[1]*d3; r[2] = om1[2]*d3;
- cvConvert( &_r, dst );
- if( jacobian )
- {
- // var1 = [vth;theta]
- // var = [om1;var1] = [om1;vth;theta]
- double dvth_dtheta = -vth*alpha/beta;
- double d1 = 0.5*dvth_dtheta*dtheta_dtr;
- double d2 = 0.5*dtheta_dtr;
- // dvar1/dR = dvar1/dtheta*dtheta/dR = [dvth/dtheta; 1] * dtheta/dtr * dtr/dR
- double dvardR[5*9] =
- {
- 0, 0, 0, 0, 0, 1, 0, -1, 0,
- 0, 0, -1, 0, 0, 0, 1, 0, 0,
- 0, 1, 0, -1, 0, 0, 0, 0, 0,
- d1, 0, 0, 0, d1, 0, 0, 0, d1,
- d2, 0, 0, 0, d2, 0, 0, 0, d2
- };
- // var2 = [om;theta]
- double dvar2dvar[] =
- {
- vth, 0, 0, om1[0], 0,
- 0, vth, 0, om1[1], 0,
- 0, 0, vth, om1[2], 0,
- 0, 0, 0, 0, 1
- };
- double domegadvar2[] =
- {
- theta, 0, 0, om1[0]*vth,
- 0, theta, 0, om1[1]*vth,
- 0, 0, theta, om1[2]*vth
- };
- CvMat _dvardR = cvMat( 5, 9, CV_64FC1, dvardR );
- CvMat _dvar2dvar = cvMat( 4, 5, CV_64FC1, dvar2dvar );
- CvMat _domegadvar2 = cvMat( 3, 4, CV_64FC1, domegadvar2 );
- double t0[3*5];
- CvMat _t0 = cvMat( 3, 5, CV_64FC1, t0 );
- cvMatMul( &_domegadvar2, &_dvar2dvar, &_t0 );
- cvMatMul( &_t0, &_dvardR, &matJ );
- }
- }
- else if( tr > 0 )
- {
- cvZero( dst );
- if( jacobian )
- {
- memset( J, 0, sizeof(J) );
- J[5] = J[15] = J[19] = 0.5;
- J[7] = J[11] = J[21] = -0.5;
- }
- }
- else
- {
- r[0] = theta*sqrt((R[0] + 1)*0.5);
- r[1] = theta*sqrt((R[4] + 1)*0.5)*(R[1] >= 0 ? 1 : -1);
- r[2] = theta*sqrt((R[8] + 1)*0.5)*(R[2] >= 0 ? 1 : -1);
- cvConvert( &_r, dst );
- if( jacobian )
- memset( J, 0, sizeof(J) );
- }
- if( jacobian )
- {
- for( i = 0; i < 3; i++ )
- {
- CvMat t = cvMat( 3, 3, CV_64F, J + i*9 );
- cvTranspose( &t, &t );
- }
- }
- }
- else
- {
- CV_Assert(0);
- return 0;
- }
- if( jacobian )
- {
- if( depth == CV_32F )
- {
- if( jacobian->rows == matJ.rows )
- cvConvert( &matJ, jacobian );
- else
- {
- _Jf = cvMat( matJ.rows, matJ.cols, CV_32FC1, Jf );
- cvConvert( &matJ, &_Jf );
- cvTranspose( &_Jf, jacobian );
- }
- }
- else if( jacobian->rows == matJ.rows )
- cvCopy( &matJ, jacobian );
- else
- cvTranspose( &matJ, jacobian );
- }
- return 1;
- }
- /*extern*/ void Rodrigues(const Mat& src, Mat& dst, Mat* jac)
- {
- if(src.rows == 1 || src.cols == 1)
- dst.create(3, 3, src.depth());
- else
- dst.create(3, 1, src.depth());
- CvMat _src = cvMat(src), _dst = cvMat(dst), _jac;
- if( jac )
- _jac = cvMat(*jac);
- cvTsRodrigues(&_src, &_dst, jac ? &_jac : 0);
- }
- } // namespace
- namespace opencv_test {
- static void test_convertHomogeneous( const Mat& _src, Mat& _dst )
- {
- Mat src = _src, dst = _dst;
- int i, count, sdims, ddims;
- int sstep1, sstep2, dstep1, dstep2;
- if( src.depth() != CV_64F )
- _src.convertTo(src, CV_64F);
- if( dst.depth() != CV_64F )
- dst.create(dst.size(), CV_MAKETYPE(CV_64F, _dst.channels()));
- if( src.rows > src.cols )
- {
- count = src.rows;
- sdims = src.channels()*src.cols;
- sstep1 = (int)(src.step/sizeof(double));
- sstep2 = 1;
- }
- else
- {
- count = src.cols;
- sdims = src.channels()*src.rows;
- if( src.rows == 1 )
- {
- sstep1 = sdims;
- sstep2 = 1;
- }
- else
- {
- sstep1 = 1;
- sstep2 = (int)(src.step/sizeof(double));
- }
- }
- if( dst.rows > dst.cols )
- {
- CV_Assert( count == dst.rows );
- ddims = dst.channels()*dst.cols;
- dstep1 = (int)(dst.step/sizeof(double));
- dstep2 = 1;
- }
- else
- {
- CV_Assert( count == dst.cols );
- ddims = dst.channels()*dst.rows;
- if( dst.rows == 1 )
- {
- dstep1 = ddims;
- dstep2 = 1;
- }
- else
- {
- dstep1 = 1;
- dstep2 = (int)(dst.step/sizeof(double));
- }
- }
- double* s = src.ptr<double>();
- double* d = dst.ptr<double>();
- if( sdims <= ddims )
- {
- int wstep = dstep2*(ddims - 1);
- for( i = 0; i < count; i++, s += sstep1, d += dstep1 )
- {
- double x = s[0];
- double y = s[sstep2];
- d[wstep] = 1;
- d[0] = x;
- d[dstep2] = y;
- if( sdims >= 3 )
- {
- d[dstep2*2] = s[sstep2*2];
- if( sdims == 4 )
- d[dstep2*3] = s[sstep2*3];
- }
- }
- }
- else
- {
- int wstep = sstep2*(sdims - 1);
- for( i = 0; i < count; i++, s += sstep1, d += dstep1 )
- {
- double w = s[wstep];
- double x = s[0];
- double y = s[sstep2];
- w = w ? 1./w : 1;
- d[0] = x*w;
- d[dstep2] = y*w;
- if( ddims == 3 )
- d[dstep2*2] = s[sstep2*2]*w;
- }
- }
- if( dst.data != _dst.data )
- dst.convertTo(_dst, _dst.depth());
- }
- namespace {
- void
- test_projectPoints( const Mat& _3d, const Mat& Rt, const Mat& A, Mat& _2d, RNG* rng, double sigma )
- {
- CV_Assert( _3d.isContinuous() );
- double p[12];
- Mat P( 3, 4, CV_64F, p );
- gemm(A, Rt, 1, Mat(), 0, P);
- int i, count = _3d.cols;
- Mat noise;
- if( rng )
- {
- if( sigma == 0 )
- rng = 0;
- else
- {
- noise.create( 1, _3d.cols, CV_64FC2 );
- rng->fill(noise, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma) );
- }
- }
- Mat temp( 1, count, CV_64FC3 );
- for( i = 0; i < count; i++ )
- {
- const double* M = _3d.ptr<double>() + i*3;
- double* m = temp.ptr<double>() + i*3;
- double X = M[0], Y = M[1], Z = M[2];
- double u = p[0]*X + p[1]*Y + p[2]*Z + p[3];
- double v = p[4]*X + p[5]*Y + p[6]*Z + p[7];
- double s = p[8]*X + p[9]*Y + p[10]*Z + p[11];
- if( !noise.empty() )
- {
- u += noise.at<Point2d>(i).x*s;
- v += noise.at<Point2d>(i).y*s;
- }
- m[0] = u;
- m[1] = v;
- m[2] = s;
- }
- test_convertHomogeneous( temp, _2d );
- }
- /********************************** Rodrigues transform ********************************/
- class CV_RodriguesTest : public cvtest::ArrayTest
- {
- public:
- CV_RodriguesTest();
- protected:
- int read_params( const cv::FileStorage& fs );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- int prepare_test_case( int test_case_idx );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- void prepare_to_validation( int );
- bool calc_jacobians;
- bool test_cpp;
- };
- CV_RodriguesTest::CV_RodriguesTest()
- {
- test_array[INPUT].push_back(NULL); // rotation vector
- test_array[OUTPUT].push_back(NULL); // rotation matrix
- test_array[OUTPUT].push_back(NULL); // jacobian (J)
- test_array[OUTPUT].push_back(NULL); // rotation vector (backward transform result)
- test_array[OUTPUT].push_back(NULL); // inverse transform jacobian (J1)
- test_array[OUTPUT].push_back(NULL); // J*J1 (or J1*J) == I(3x3)
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- element_wise_relative_error = false;
- calc_jacobians = false;
- test_cpp = false;
- }
- int CV_RodriguesTest::read_params( const cv::FileStorage& fs )
- {
- int code = cvtest::ArrayTest::read_params( fs );
- return code;
- }
- void CV_RodriguesTest::get_test_array_types_and_sizes(
- int /*test_case_idx*/, vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- int depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
- int i, code;
- code = cvtest::randInt(rng) % 3;
- types[INPUT][0] = CV_MAKETYPE(depth, 1);
- if( code == 0 )
- {
- sizes[INPUT][0] = cvSize(1,1);
- types[INPUT][0] = CV_MAKETYPE(depth, 3);
- }
- else if( code == 1 )
- sizes[INPUT][0] = cvSize(3,1);
- else
- sizes[INPUT][0] = cvSize(1,3);
- sizes[OUTPUT][0] = cvSize(3, 3);
- types[OUTPUT][0] = CV_MAKETYPE(depth, 1);
- types[OUTPUT][1] = CV_MAKETYPE(depth, 1);
- if( cvtest::randInt(rng) % 2 )
- sizes[OUTPUT][1] = cvSize(3,9);
- else
- sizes[OUTPUT][1] = cvSize(9,3);
- types[OUTPUT][2] = types[INPUT][0];
- sizes[OUTPUT][2] = sizes[INPUT][0];
- types[OUTPUT][3] = types[OUTPUT][1];
- sizes[OUTPUT][3] = cvSize(sizes[OUTPUT][1].height, sizes[OUTPUT][1].width);
- types[OUTPUT][4] = types[OUTPUT][1];
- sizes[OUTPUT][4] = cvSize(3,3);
- calc_jacobians = cvtest::randInt(rng) % 3 != 0;
- if( !calc_jacobians )
- sizes[OUTPUT][1] = sizes[OUTPUT][3] = sizes[OUTPUT][4] = cvSize(0,0);
- for( i = 0; i < 5; i++ )
- {
- types[REF_OUTPUT][i] = types[OUTPUT][i];
- sizes[REF_OUTPUT][i] = sizes[OUTPUT][i];
- }
- test_cpp = (cvtest::randInt(rng) & 256) == 0;
- }
- double CV_RodriguesTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int j )
- {
- return j == 4 ? 1e-2 : 1e-2;
- }
- void CV_RodriguesTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
- {
- if( i == INPUT && j == 0 )
- {
- double r[3], theta0, theta1, f;
- Mat _r( arr.rows, arr.cols, CV_MAKETYPE(CV_64F,arr.channels()), r );
- RNG& rng = ts->get_rng();
- r[0] = cvtest::randReal(rng)*CV_PI*2;
- r[1] = cvtest::randReal(rng)*CV_PI*2;
- r[2] = cvtest::randReal(rng)*CV_PI*2;
- theta0 = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);
- theta1 = fmod(theta0, CV_PI*2);
- if( theta1 > CV_PI )
- theta1 = -(CV_PI*2 - theta1);
- f = theta1/(theta0 ? theta0 : 1);
- r[0] *= f;
- r[1] *= f;
- r[2] *= f;
- cvtest::convert( _r, arr, arr.type() );
- }
- else
- cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
- }
- int CV_RodriguesTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- return code;
- }
- void CV_RodriguesTest::run_func()
- {
- cv::Mat v = test_mat[INPUT][0], M = test_mat[OUTPUT][0], v2 = test_mat[OUTPUT][2];
- cv::Mat M0 = M, v2_0 = v2;
- if( !calc_jacobians )
- {
- cv::Rodrigues(v, M);
- cv::Rodrigues(M, v2);
- }
- else
- {
- cv::Mat J1 = test_mat[OUTPUT][1], J2 = test_mat[OUTPUT][3];
- cv::Mat J1_0 = J1, J2_0 = J2;
- cv::Rodrigues(v, M, J1);
- cv::Rodrigues(M, v2, J2);
- if( J1.data != J1_0.data )
- {
- if( J1.size() != J1_0.size() )
- J1 = J1.t();
- J1.convertTo(J1_0, J1_0.type());
- }
- if( J2.data != J2_0.data )
- {
- if( J2.size() != J2_0.size() )
- J2 = J2.t();
- J2.convertTo(J2_0, J2_0.type());
- }
- }
- if( M.data != M0.data )
- M.reshape(M0.channels(), M0.rows).convertTo(M0, M0.type());
- if( v2.data != v2_0.data )
- v2.reshape(v2_0.channels(), v2_0.rows).convertTo(v2_0, v2_0.type());
- }
- void CV_RodriguesTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- const Mat& vec = test_mat[INPUT][0];
- Mat& m = test_mat[REF_OUTPUT][0];
- Mat& vec2 = test_mat[REF_OUTPUT][2];
- Mat* v2m_jac = 0, *m2v_jac = 0;
- double theta0, theta1;
- if( calc_jacobians )
- {
- v2m_jac = &test_mat[REF_OUTPUT][1];
- m2v_jac = &test_mat[REF_OUTPUT][3];
- }
- cvtest::Rodrigues( vec, m, v2m_jac );
- cvtest::Rodrigues( m, vec2, m2v_jac );
- cvtest::copy( vec, vec2 );
- theta0 = cvtest::norm( vec2, CV_L2 );
- theta1 = fmod( theta0, CV_PI*2 );
- if( theta1 > CV_PI )
- theta1 = -(CV_PI*2 - theta1);
- vec2 *= theta1/(theta0 ? theta0 : 1);
- if( calc_jacobians )
- {
- //cvInvert( v2m_jac, m2v_jac, CV_SVD );
- double nrm = cvtest::norm(test_mat[REF_OUTPUT][3], CV_C);
- if( FLT_EPSILON < nrm && nrm < 1000 )
- {
- gemm( test_mat[OUTPUT][1], test_mat[OUTPUT][3],
- 1, Mat(), 0, test_mat[OUTPUT][4],
- v2m_jac->rows == 3 ? 0 : CV_GEMM_A_T + CV_GEMM_B_T );
- }
- else
- {
- setIdentity(test_mat[OUTPUT][4], Scalar::all(1.));
- cvtest::copy( test_mat[REF_OUTPUT][2], test_mat[OUTPUT][2] );
- }
- setIdentity(test_mat[REF_OUTPUT][4], Scalar::all(1.));
- }
- }
- /********************************** fundamental matrix *********************************/
- class CV_FundamentalMatTest : public cvtest::ArrayTest
- {
- public:
- CV_FundamentalMatTest();
- protected:
- int read_params( const cv::FileStorage& fs );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- int prepare_test_case( int test_case_idx );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- void prepare_to_validation( int );
- int method;
- int img_size;
- int cube_size;
- int dims;
- int f_result;
- double min_f, max_f;
- double sigma;
- bool test_cpp;
- };
- CV_FundamentalMatTest::CV_FundamentalMatTest()
- {
- // input arrays:
- // 0, 1 - arrays of 2d points that are passed to %func%.
- // Can have different data type, layout, be stored in homogeneous coordinates or not.
- // 2 - array of 3d points that are projected to both view planes
- // 3 - [R|t] matrix for the second view plane (for the first one it is [I|0]
- // 4, 5 - intrinsic matrices
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[TEMP].push_back(NULL);
- test_array[TEMP].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- element_wise_relative_error = false;
- method = 0;
- img_size = 10;
- cube_size = 10;
- dims = 0;
- min_f = 1;
- max_f = 3;
- sigma = 0;//0.1;
- f_result = 0;
- test_cpp = false;
- }
- int CV_FundamentalMatTest::read_params( const cv::FileStorage& fs )
- {
- int code = cvtest::ArrayTest::read_params( fs );
- return code;
- }
- void CV_FundamentalMatTest::get_test_array_types_and_sizes( int /*test_case_idx*/,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- int pt_depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
- double pt_count_exp = cvtest::randReal(rng)*6 + 1;
- int pt_count = cvRound(exp(pt_count_exp));
- dims = cvtest::randInt(rng) % 2 + 2;
- method = 1 << (cvtest::randInt(rng) % 4);
- if( method == CV_FM_7POINT )
- pt_count = 7;
- else
- {
- pt_count = MAX( pt_count, 8 + (method == CV_FM_8POINT) );
- if( pt_count >= 8 && cvtest::randInt(rng) % 2 )
- method |= CV_FM_8POINT;
- }
- types[INPUT][0] = CV_MAKETYPE(pt_depth, 1);
- sizes[INPUT][0] = cvSize(dims, pt_count);
- if( cvtest::randInt(rng) % 2 )
- {
- types[INPUT][0] = CV_MAKETYPE(pt_depth, dims);
- if( cvtest::randInt(rng) % 2 )
- sizes[INPUT][0] = cvSize(pt_count, 1);
- else
- sizes[INPUT][0] = cvSize(1, pt_count);
- }
- sizes[INPUT][1] = sizes[INPUT][0];
- types[INPUT][1] = types[INPUT][0];
- sizes[INPUT][2] = cvSize(pt_count, 1 );
- types[INPUT][2] = CV_64FC3;
- sizes[INPUT][3] = cvSize(4,3);
- types[INPUT][3] = CV_64FC1;
- sizes[INPUT][4] = sizes[INPUT][5] = cvSize(3,3);
- types[INPUT][4] = types[INPUT][5] = CV_MAKETYPE(CV_64F, 1);
- sizes[TEMP][0] = cvSize(3,3);
- types[TEMP][0] = CV_64FC1;
- sizes[TEMP][1] = cvSize(pt_count,1);
- types[TEMP][1] = CV_8UC1;
- sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,1);
- types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
- sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(pt_count,1);
- types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_8UC1;
- test_cpp = (cvtest::randInt(rng) & 256) == 0;
- }
- double CV_FundamentalMatTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- return 1e-2;
- }
- void CV_FundamentalMatTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
- {
- double t[12]={0};
- RNG& rng = ts->get_rng();
- if( i != INPUT )
- {
- cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
- return;
- }
- switch( j )
- {
- case 0:
- case 1:
- return; // fill them later in prepare_test_case
- case 2:
- {
- double* p = arr.ptr<double>();
- for( i = 0; i < arr.cols*3; i += 3 )
- {
- p[i] = cvtest::randReal(rng)*cube_size;
- p[i+1] = cvtest::randReal(rng)*cube_size;
- p[i+2] = cvtest::randReal(rng)*cube_size + cube_size;
- }
- }
- break;
- case 3:
- {
- double r[3];
- Mat rot_vec( 3, 1, CV_64F, r );
- Mat rot_mat( 3, 3, CV_64F, t, 4*sizeof(t[0]) );
- r[0] = cvtest::randReal(rng)*CV_PI*2;
- r[1] = cvtest::randReal(rng)*CV_PI*2;
- r[2] = cvtest::randReal(rng)*CV_PI*2;
- cvtest::Rodrigues( rot_vec, rot_mat );
- t[3] = cvtest::randReal(rng)*cube_size;
- t[7] = cvtest::randReal(rng)*cube_size;
- t[11] = cvtest::randReal(rng)*cube_size;
- Mat( 3, 4, CV_64F, t ).convertTo(arr, arr.type());
- }
- break;
- case 4:
- case 5:
- t[0] = t[4] = cvtest::randReal(rng)*(max_f - min_f) + min_f;
- t[2] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[0];
- t[5] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[4];
- t[8] = 1.;
- Mat( 3, 3, CV_64F, t ).convertTo( arr, arr.type() );
- break;
- }
- }
- int CV_FundamentalMatTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- if( code > 0 )
- {
- const Mat& _3d = test_mat[INPUT][2];
- RNG& rng = ts->get_rng();
- double Idata[] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0 };
- Mat I( 3, 4, CV_64F, Idata );
- int k;
- for( k = 0; k < 2; k++ )
- {
- const Mat& Rt = k == 0 ? I : test_mat[INPUT][3];
- const Mat& A = test_mat[INPUT][k == 0 ? 4 : 5];
- Mat& _2d = test_mat[INPUT][k];
- test_projectPoints( _3d, Rt, A, _2d, &rng, sigma );
- }
- }
- return code;
- }
- void CV_FundamentalMatTest::run_func()
- {
- // cvFindFundamentalMat calls cv::findFundamentalMat
- cv::Mat _input0 = test_mat[INPUT][0], _input1 = test_mat[INPUT][1];
- cv::Mat& F = test_mat[TEMP][0], &mask = test_mat[TEMP][1];
- F = cv::findFundamentalMat( _input0, _input1, method, MAX(sigma*3, 0.01), 0, mask );
- f_result = !F.empty();
- }
- void CV_FundamentalMatTest::prepare_to_validation( int test_case_idx )
- {
- const Mat& Rt = test_mat[INPUT][3];
- const Mat& A1 = test_mat[INPUT][4];
- const Mat& A2 = test_mat[INPUT][5];
- double f0[9], f[9];
- Mat F0(3, 3, CV_64FC1, f0), F(3, 3, CV_64F, f);
- Mat invA1, invA2, R=Rt.colRange(0, 3), T;
- cv::invert(A1, invA1, CV_SVD);
- cv::invert(A2, invA2, CV_SVD);
- double tx = Rt.at<double>(0, 3);
- double ty = Rt.at<double>(1, 3);
- double tz = Rt.at<double>(2, 3);
- double _t_x[] = { 0, -tz, ty, tz, 0, -tx, -ty, tx, 0 };
- // F = (A2^-T)*[t]_x*R*(A1^-1)
- cv::gemm( invA2, Mat( 3, 3, CV_64F, _t_x ), 1, Mat(), 0, T, CV_GEMM_A_T );
- cv::gemm( R, invA1, 1, Mat(), 0, invA2 );
- cv::gemm( T, invA2, 1, Mat(), 0, F0 );
- F0 *= 1./f0[8];
- uchar* status = test_mat[TEMP][1].ptr();
- double err_level = get_success_error_level( test_case_idx, OUTPUT, 1 );
- uchar* mtfm1 = test_mat[REF_OUTPUT][1].ptr();
- uchar* mtfm2 = test_mat[OUTPUT][1].ptr();
- double* f_prop1 = test_mat[REF_OUTPUT][0].ptr<double>();
- double* f_prop2 = test_mat[OUTPUT][0].ptr<double>();
- int i, pt_count = test_mat[INPUT][2].cols;
- Mat p1( 1, pt_count, CV_64FC2 );
- Mat p2( 1, pt_count, CV_64FC2 );
- test_convertHomogeneous( test_mat[INPUT][0], p1 );
- test_convertHomogeneous( test_mat[INPUT][1], p2 );
- Mat Fsrc = test_mat[TEMP][0];
- if( Fsrc.rows > 3 )
- Fsrc = Fsrc.rowRange(0, 3);
- cvtest::convert(Fsrc, F, F.type());
- if( method <= CV_FM_8POINT )
- memset( status, 1, pt_count );
- for( i = 0; i < pt_count; i++ )
- {
- double x1 = p1.at<Point2d>(i).x;
- double y1 = p1.at<Point2d>(i).y;
- double x2 = p2.at<Point2d>(i).x;
- double y2 = p2.at<Point2d>(i).y;
- double n1 = 1./sqrt(x1*x1 + y1*y1 + 1);
- double n2 = 1./sqrt(x2*x2 + y2*y2 + 1);
- double t0 = fabs(f0[0]*x2*x1 + f0[1]*x2*y1 + f0[2]*x2 +
- f0[3]*y2*x1 + f0[4]*y2*y1 + f0[5]*y2 +
- f0[6]*x1 + f0[7]*y1 + f0[8])*n1*n2;
- double t = fabs(f[0]*x2*x1 + f[1]*x2*y1 + f[2]*x2 +
- f[3]*y2*x1 + f[4]*y2*y1 + f[5]*y2 +
- f[6]*x1 + f[7]*y1 + f[8])*n1*n2;
- mtfm1[i] = 1;
- mtfm2[i] = !status[i] || t0 > err_level || t < err_level;
- }
- f_prop1[0] = 1;
- f_prop1[1] = 1;
- f_prop1[2] = 0;
- f_prop2[0] = f_result != 0;
- f_prop2[1] = f[8];
- f_prop2[2] = cv::determinant( F );
- }
- /******************************* find essential matrix ***********************************/
- class CV_EssentialMatTest : public cvtest::ArrayTest
- {
- public:
- CV_EssentialMatTest();
- protected:
- int read_params( const cv::FileStorage& fs );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- int prepare_test_case( int test_case_idx );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- void prepare_to_validation( int );
- #if 0
- double sampson_error(const double* f, double x1, double y1, double x2, double y2);
- #endif
- int method;
- int img_size;
- int cube_size;
- int dims;
- double min_f, max_f;
- double sigma;
- };
- CV_EssentialMatTest::CV_EssentialMatTest()
- {
- // input arrays:
- // 0, 1 - arrays of 2d points that are passed to %func%.
- // Can have different data type, layout, be stored in homogeneous coordinates or not.
- // 2 - array of 3d points that are projected to both view planes
- // 3 - [R|t] matrix for the second view plane (for the first one it is [I|0]
- // 4 - intrinsic matrix for both camera
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[TEMP].push_back(NULL);
- test_array[TEMP].push_back(NULL);
- test_array[TEMP].push_back(NULL);
- test_array[TEMP].push_back(NULL);
- test_array[TEMP].push_back(NULL);
- test_array[OUTPUT].push_back(NULL); // Essential Matrix singularity
- test_array[OUTPUT].push_back(NULL); // Inliers mask
- test_array[OUTPUT].push_back(NULL); // Translation error
- test_array[OUTPUT].push_back(NULL); // Positive depth count
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- element_wise_relative_error = false;
- method = 0;
- img_size = 10;
- cube_size = 10;
- dims = 0;
- min_f = 1;
- max_f = 3;
- sigma = 0;
- }
- int CV_EssentialMatTest::read_params( const cv::FileStorage& fs )
- {
- int code = cvtest::ArrayTest::read_params( fs );
- return code;
- }
- void CV_EssentialMatTest::get_test_array_types_and_sizes( int /*test_case_idx*/,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- int pt_depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
- double pt_count_exp = cvtest::randReal(rng)*6 + 1;
- int pt_count = MAX(5, cvRound(exp(pt_count_exp)));
- dims = cvtest::randInt(rng) % 2 + 2;
- dims = 2;
- method = CV_LMEDS << (cvtest::randInt(rng) % 2);
- types[INPUT][0] = CV_MAKETYPE(pt_depth, 1);
- sizes[INPUT][0] = cvSize(dims, pt_count);
- if( cvtest::randInt(rng) % 2 )
- {
- types[INPUT][0] = CV_MAKETYPE(pt_depth, dims);
- if( cvtest::randInt(rng) % 2 )
- sizes[INPUT][0] = cvSize(pt_count, 1);
- else
- sizes[INPUT][0] = cvSize(1, pt_count);
- }
- sizes[INPUT][1] = sizes[INPUT][0];
- types[INPUT][1] = types[INPUT][0];
- sizes[INPUT][2] = cvSize(pt_count, 1 );
- types[INPUT][2] = CV_64FC3;
- sizes[INPUT][3] = cvSize(4,3);
- types[INPUT][3] = CV_64FC1;
- sizes[INPUT][4] = cvSize(3,3);
- types[INPUT][4] = CV_MAKETYPE(CV_64F, 1);
- sizes[TEMP][0] = cvSize(3,3);
- types[TEMP][0] = CV_64FC1;
- sizes[TEMP][1] = cvSize(pt_count,1);
- types[TEMP][1] = CV_8UC1;
- sizes[TEMP][2] = cvSize(3,3);
- types[TEMP][2] = CV_64FC1;
- sizes[TEMP][3] = cvSize(3, 1);
- types[TEMP][3] = CV_64FC1;
- sizes[TEMP][4] = cvSize(pt_count,1);
- types[TEMP][4] = CV_8UC1;
- sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,1);
- types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
- sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(pt_count,1);
- types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_8UC1;
- sizes[OUTPUT][2] = sizes[REF_OUTPUT][2] = cvSize(1,1);
- types[OUTPUT][2] = types[REF_OUTPUT][2] = CV_64FC1;
- sizes[OUTPUT][3] = sizes[REF_OUTPUT][3] = cvSize(1,1);
- types[OUTPUT][3] = types[REF_OUTPUT][3] = CV_8UC1;
- }
- double CV_EssentialMatTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- return 1e-2;
- }
- void CV_EssentialMatTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
- {
- double t[12]={0};
- RNG& rng = ts->get_rng();
- if( i != INPUT )
- {
- cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
- return;
- }
- switch( j )
- {
- case 0:
- case 1:
- return; // fill them later in prepare_test_case
- case 2:
- {
- double* p = arr.ptr<double>();
- for( i = 0; i < arr.cols*3; i += 3 )
- {
- p[i] = cvtest::randReal(rng)*cube_size;
- p[i+1] = cvtest::randReal(rng)*cube_size;
- p[i+2] = cvtest::randReal(rng)*cube_size + cube_size;
- }
- }
- break;
- case 3:
- {
- double r[3];
- Mat rot_vec( 3, 1, CV_64F, r );
- Mat rot_mat( 3, 3, CV_64F, t, 4*sizeof(t[0]) );
- r[0] = cvtest::randReal(rng)*CV_PI*2;
- r[1] = cvtest::randReal(rng)*CV_PI*2;
- r[2] = cvtest::randReal(rng)*CV_PI*2;
- cvtest::Rodrigues( rot_vec, rot_mat );
- t[3] = cvtest::randReal(rng)*cube_size;
- t[7] = cvtest::randReal(rng)*cube_size;
- t[11] = cvtest::randReal(rng)*cube_size;
- Mat( 3, 4, CV_64F, t ).convertTo(arr, arr.type());
- }
- break;
- case 4:
- t[0] = t[4] = cvtest::randReal(rng)*(max_f - min_f) + min_f;
- t[2] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[0];
- t[5] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[4];
- t[8] = 1.;
- Mat( 3, 3, CV_64F, t ).convertTo( arr, arr.type() );
- break;
- }
- }
- int CV_EssentialMatTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- if( code > 0 )
- {
- const Mat& _3d = test_mat[INPUT][2];
- RNG& rng = ts->get_rng();
- double Idata[] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0 };
- Mat I( 3, 4, CV_64F, Idata );
- int k;
- for( k = 0; k < 2; k++ )
- {
- const Mat& Rt = k == 0 ? I : test_mat[INPUT][3];
- const Mat& A = test_mat[INPUT][4];
- Mat& _2d = test_mat[INPUT][k];
- test_projectPoints( _3d, Rt, A, _2d, &rng, sigma );
- }
- }
- return code;
- }
- void CV_EssentialMatTest::run_func()
- {
- Mat _input0(test_mat[INPUT][0]), _input1(test_mat[INPUT][1]);
- Mat K(test_mat[INPUT][4]);
- double focal(K.at<double>(0, 0));
- cv::Point2d pp(K.at<double>(0, 2), K.at<double>(1, 2));
- RNG& rng = ts->get_rng();
- Mat E, mask1(test_mat[TEMP][1]);
- E = cv::findEssentialMat( _input0, _input1, focal, pp, method, 0.99, MAX(sigma*3, 0.0001), mask1 );
- if (E.rows > 3)
- {
- int count = E.rows / 3;
- int row = (cvtest::randInt(rng) % count) * 3;
- E = E.rowRange(row, row + 3) * 1.0;
- }
- E.copyTo(test_mat[TEMP][0]);
- Mat R, t, mask2;
- recoverPose( E, _input0, _input1, R, t, focal, pp, mask2 );
- R.copyTo(test_mat[TEMP][2]);
- t.copyTo(test_mat[TEMP][3]);
- mask2.copyTo(test_mat[TEMP][4]);
- }
- #if 0
- double CV_EssentialMatTest::sampson_error(const double * f, double x1, double y1, double x2, double y2)
- {
- double Fx1[3] = {
- f[0] * x1 + f[1] * y1 + f[2],
- f[3] * x1 + f[4] * y1 + f[5],
- f[6] * x1 + f[7] * y1 + f[8]
- };
- double Ftx2[3] = {
- f[0] * x2 + f[3] * y2 + f[6],
- f[1] * x2 + f[4] * y2 + f[7],
- f[2] * x2 + f[5] * y2 + f[8]
- };
- double x2tFx1 = Fx1[0] * x2 + Fx1[1] * y2 + Fx1[2];
- double error = x2tFx1 * x2tFx1 / (Fx1[0] * Fx1[0] + Fx1[1] * Fx1[1] + Ftx2[0] * Ftx2[0] + Ftx2[1] * Ftx2[1]);
- error = sqrt(error);
- return error;
- }
- #endif
- void CV_EssentialMatTest::prepare_to_validation( int test_case_idx )
- {
- const Mat& Rt0 = test_mat[INPUT][3];
- const Mat& A = test_mat[INPUT][4];
- double f0[9], f[9], e[9];
- Mat F0(3, 3, CV_64FC1, f0), F(3, 3, CV_64F, f);
- Mat E(3, 3, CV_64F, e);
- Mat invA, R=Rt0.colRange(0, 3), T1, T2;
- cv::invert(A, invA, CV_SVD);
- double tx = Rt0.at<double>(0, 3);
- double ty = Rt0.at<double>(1, 3);
- double tz = Rt0.at<double>(2, 3);
- double _t_x[] = { 0, -tz, ty, tz, 0, -tx, -ty, tx, 0 };
- // F = (A2^-T)*[t]_x*R*(A1^-1)
- cv::gemm( invA, Mat( 3, 3, CV_64F, _t_x ), 1, Mat(), 0, T1, CV_GEMM_A_T );
- cv::gemm( R, invA, 1, Mat(), 0, T2 );
- cv::gemm( T1, T2, 1, Mat(), 0, F0 );
- F0 *= 1./f0[8];
- uchar* status = test_mat[TEMP][1].ptr();
- double err_level = get_success_error_level( test_case_idx, OUTPUT, 1 );
- uchar* mtfm1 = test_mat[REF_OUTPUT][1].ptr();
- uchar* mtfm2 = test_mat[OUTPUT][1].ptr();
- double* e_prop1 = test_mat[REF_OUTPUT][0].ptr<double>();
- double* e_prop2 = test_mat[OUTPUT][0].ptr<double>();
- Mat E_prop2 = Mat(3, 1, CV_64F, e_prop2);
- int i, pt_count = test_mat[INPUT][2].cols;
- Mat p1( 1, pt_count, CV_64FC2 );
- Mat p2( 1, pt_count, CV_64FC2 );
- test_convertHomogeneous( test_mat[INPUT][0], p1 );
- test_convertHomogeneous( test_mat[INPUT][1], p2 );
- cvtest::convert(test_mat[TEMP][0], E, E.type());
- cv::gemm( invA, E, 1, Mat(), 0, T1, CV_GEMM_A_T );
- cv::gemm( T1, invA, 1, Mat(), 0, F );
- for( i = 0; i < pt_count; i++ )
- {
- double x1 = p1.at<Point2d>(i).x;
- double y1 = p1.at<Point2d>(i).y;
- double x2 = p2.at<Point2d>(i).x;
- double y2 = p2.at<Point2d>(i).y;
- // double t0 = sampson_error(f0, x1, y1, x2, y2);
- // double t = sampson_error(f, x1, y1, x2, y2);
- double n1 = 1./sqrt(x1*x1 + y1*y1 + 1);
- double n2 = 1./sqrt(x2*x2 + y2*y2 + 1);
- double t0 = fabs(f0[0]*x2*x1 + f0[1]*x2*y1 + f0[2]*x2 +
- f0[3]*y2*x1 + f0[4]*y2*y1 + f0[5]*y2 +
- f0[6]*x1 + f0[7]*y1 + f0[8])*n1*n2;
- double t = fabs(f[0]*x2*x1 + f[1]*x2*y1 + f[2]*x2 +
- f[3]*y2*x1 + f[4]*y2*y1 + f[5]*y2 +
- f[6]*x1 + f[7]*y1 + f[8])*n1*n2;
- mtfm1[i] = 1;
- mtfm2[i] = !status[i] || t0 > err_level || t < err_level;
- }
- e_prop1[0] = sqrt(0.5);
- e_prop1[1] = sqrt(0.5);
- e_prop1[2] = 0;
- e_prop2[0] = 0;
- e_prop2[1] = 0;
- e_prop2[2] = 0;
- SVD::compute(E, E_prop2);
- double* pose_prop1 = test_mat[REF_OUTPUT][2].ptr<double>();
- double* pose_prop2 = test_mat[OUTPUT][2].ptr<double>();
- double terr1 = cvtest::norm(Rt0.col(3) / cvtest::norm(Rt0.col(3), NORM_L2) + test_mat[TEMP][3], NORM_L2);
- double terr2 = cvtest::norm(Rt0.col(3) / cvtest::norm(Rt0.col(3), NORM_L2) - test_mat[TEMP][3], NORM_L2);
- Mat rvec(3, 1, CV_32F);
- cvtest::Rodrigues(Rt0.colRange(0, 3), rvec);
- pose_prop1[0] = 0;
- // No check for CV_LMeDS on translation. Since it
- // involves with some degraded problem, when data is exact inliers.
- pose_prop2[0] = method == CV_LMEDS || pt_count == 5 ? 0 : MIN(terr1, terr2);
- // int inliers_count = countNonZero(test_mat[TEMP][1]);
- // int good_count = countNonZero(test_mat[TEMP][4]);
- test_mat[OUTPUT][3] = true; //good_count >= inliers_count / 2;
- test_mat[REF_OUTPUT][3] = true;
- }
- /********************************** convert homogeneous *********************************/
- class CV_ConvertHomogeneousTest : public cvtest::ArrayTest
- {
- public:
- CV_ConvertHomogeneousTest();
- protected:
- int read_params( const cv::FileStorage& fs );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- void prepare_to_validation( int );
- int dims1, dims2;
- int pt_count;
- };
- CV_ConvertHomogeneousTest::CV_ConvertHomogeneousTest()
- {
- test_array[INPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- element_wise_relative_error = false;
- pt_count = dims1 = dims2 = 0;
- }
- int CV_ConvertHomogeneousTest::read_params( const cv::FileStorage& fs )
- {
- int code = cvtest::ArrayTest::read_params( fs );
- return code;
- }
- void CV_ConvertHomogeneousTest::get_test_array_types_and_sizes( int /*test_case_idx*/,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- int pt_depth1 = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
- int pt_depth2 = pt_depth1;//cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
- double pt_count_exp = cvtest::randReal(rng)*6 + 1;
- int t;
- pt_count = cvRound(exp(pt_count_exp));
- pt_count = MAX( pt_count, 5 );
- dims1 = 2 + (cvtest::randInt(rng) % 2);
- dims2 = dims1 + 1;
- if( cvtest::randInt(rng) % 2 )
- CV_SWAP( dims1, dims2, t );
- types[INPUT][0] = CV_MAKETYPE(pt_depth1, 1);
- sizes[INPUT][0] = cvSize(dims1, pt_count);
- if( cvtest::randInt(rng) % 2 )
- {
- types[INPUT][0] = CV_MAKETYPE(pt_depth1, dims1);
- if( cvtest::randInt(rng) % 2 )
- sizes[INPUT][0] = cvSize(pt_count, 1);
- else
- sizes[INPUT][0] = cvSize(1, pt_count);
- }
- types[OUTPUT][0] = CV_MAKETYPE(pt_depth2, dims2);
- sizes[OUTPUT][0] = cvSize(1, pt_count);
- types[REF_OUTPUT][0] = types[OUTPUT][0];
- sizes[REF_OUTPUT][0] = sizes[OUTPUT][0];
- }
- double CV_ConvertHomogeneousTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- return 1e-5;
- }
- void CV_ConvertHomogeneousTest::fill_array( int /*test_case_idx*/, int /*i*/, int /*j*/, Mat& arr )
- {
- Mat temp( 1, pt_count, CV_MAKETYPE(CV_64FC1,dims1) );
- RNG& rng = ts->get_rng();
- CvScalar low = cvScalarAll(0), high = cvScalarAll(10);
- if( dims1 > dims2 )
- low.val[dims1-1] = 1.;
- cvtest::randUni( rng, temp, low, high );
- test_convertHomogeneous( temp, arr );
- }
- void CV_ConvertHomogeneousTest::run_func()
- {
- cv::Mat _input = test_mat[INPUT][0], &_output = test_mat[OUTPUT][0];
- if( dims1 > dims2 )
- cv::convertPointsFromHomogeneous(_input, _output);
- else
- cv::convertPointsToHomogeneous(_input, _output);
- }
- void CV_ConvertHomogeneousTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- test_convertHomogeneous( test_mat[INPUT][0], test_mat[REF_OUTPUT][0] );
- }
- /************************** compute corresponding epipolar lines ************************/
- class CV_ComputeEpilinesTest : public cvtest::ArrayTest
- {
- public:
- CV_ComputeEpilinesTest();
- protected:
- int read_params( const cv::FileStorage& fs );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- void prepare_to_validation( int );
- int which_image;
- int dims;
- int pt_count;
- };
- CV_ComputeEpilinesTest::CV_ComputeEpilinesTest()
- {
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- element_wise_relative_error = false;
- pt_count = dims = which_image = 0;
- }
- int CV_ComputeEpilinesTest::read_params( const cv::FileStorage& fs )
- {
- int code = cvtest::ArrayTest::read_params( fs );
- return code;
- }
- void CV_ComputeEpilinesTest::get_test_array_types_and_sizes( int /*test_case_idx*/,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- int fm_depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
- int pt_depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
- int ln_depth = pt_depth;
- double pt_count_exp = cvtest::randReal(rng)*6;
- which_image = 1 + (cvtest::randInt(rng) % 2);
- pt_count = cvRound(exp(pt_count_exp));
- pt_count = MAX( pt_count, 1 );
- bool few_points = pt_count < 5;
- dims = 2 + (cvtest::randInt(rng) % 2);
- types[INPUT][0] = CV_MAKETYPE(pt_depth, 1);
- sizes[INPUT][0] = cvSize(dims, pt_count);
- if( cvtest::randInt(rng) % 2 || few_points )
- {
- types[INPUT][0] = CV_MAKETYPE(pt_depth, dims);
- if( cvtest::randInt(rng) % 2 )
- sizes[INPUT][0] = cvSize(pt_count, 1);
- else
- sizes[INPUT][0] = cvSize(1, pt_count);
- }
- types[INPUT][1] = CV_MAKETYPE(fm_depth, 1);
- sizes[INPUT][1] = cvSize(3, 3);
- types[OUTPUT][0] = CV_MAKETYPE(ln_depth, 3);
- sizes[OUTPUT][0] = cvSize(1, pt_count);
- types[REF_OUTPUT][0] = types[OUTPUT][0];
- sizes[REF_OUTPUT][0] = sizes[OUTPUT][0];
- }
- double CV_ComputeEpilinesTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- return 1e-5;
- }
- void CV_ComputeEpilinesTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
- {
- RNG& rng = ts->get_rng();
- if( i == INPUT && j == 0 )
- {
- Mat temp( 1, pt_count, CV_MAKETYPE(CV_64FC1,dims) );
- cvtest::randUni( rng, temp, cvScalar(0,0,1), cvScalarAll(10) );
- test_convertHomogeneous( temp, arr );
- }
- else if( i == INPUT && j == 1 )
- cvtest::randUni( rng, arr, cvScalarAll(0), cvScalarAll(10) );
- else
- cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
- }
- void CV_ComputeEpilinesTest::run_func()
- {
- cv::Mat _points = test_mat[INPUT][0], _F = test_mat[INPUT][1], &_lines = test_mat[OUTPUT][0];
- cv::computeCorrespondEpilines( _points, which_image, _F, _lines );
- }
- void CV_ComputeEpilinesTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- Mat pt( 1, pt_count, CV_MAKETYPE(CV_64F, 3) );
- Mat lines( 1, pt_count, CV_MAKETYPE(CV_64F, 3) );
- double f[9];
- Mat F( 3, 3, CV_64F, f );
- test_convertHomogeneous( test_mat[INPUT][0], pt );
- test_mat[INPUT][1].convertTo(F, CV_64F);
- if( which_image == 2 )
- cv::transpose( F, F );
- for( int i = 0; i < pt_count; i++ )
- {
- double* p = pt.ptr<double>() + i*3;
- double* l = lines.ptr<double>() + i*3;
- double t0 = f[0]*p[0] + f[1]*p[1] + f[2]*p[2];
- double t1 = f[3]*p[0] + f[4]*p[1] + f[5]*p[2];
- double t2 = f[6]*p[0] + f[7]*p[1] + f[8]*p[2];
- double d = sqrt(t0*t0 + t1*t1);
- d = d ? 1./d : 1.;
- l[0] = t0*d; l[1] = t1*d; l[2] = t2*d;
- }
- test_convertHomogeneous( lines, test_mat[REF_OUTPUT][0] );
- }
- TEST(Calib3d_Rodrigues, accuracy) { CV_RodriguesTest test; test.safe_run(); }
- TEST(Calib3d_FindFundamentalMat, accuracy) { CV_FundamentalMatTest test; test.safe_run(); }
- TEST(Calib3d_ConvertHomogeneoous, accuracy) { CV_ConvertHomogeneousTest test; test.safe_run(); }
- TEST(Calib3d_ComputeEpilines, accuracy) { CV_ComputeEpilinesTest test; test.safe_run(); }
- TEST(Calib3d_FindEssentialMat, accuracy) { CV_EssentialMatTest test; test.safe_run(); }
- TEST(Calib3d_FindFundamentalMat, correctMatches)
- {
- double fdata[] = {0, 0, 0, 0, 0, -1, 0, 1, 0};
- double p1data[] = {200, 0, 1};
- double p2data[] = {170, 0, 1};
- Mat F(3, 3, CV_64F, fdata);
- Mat p1(1, 1, CV_64FC2, p1data);
- Mat p2(1, 1, CV_64FC2, p2data);
- Mat np1, np2;
- correctMatches(F, p1, p2, np1, np2);
- cout << np1 << endl;
- cout << np2 << endl;
- }
- }} // namespace
- /* End of file. */
|