123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #include "test_chessboardgenerator.hpp"
- #include <functional>
- namespace opencv_test { namespace {
- #define _L2_ERR
- //#define DEBUG_CHESSBOARD
- #ifdef DEBUG_CHESSBOARD
- void show_points( const Mat& gray, const Mat& expected, const vector<Point2f>& actual, bool was_found )
- {
- Mat rgb( gray.size(), CV_8U);
- merge(vector<Mat>(3, gray), rgb);
- for(size_t i = 0; i < actual.size(); i++ )
- circle( rgb, actual[i], 5, Scalar(0, 0, 200), 1, LINE_AA);
- if( !expected.empty() )
- {
- const Point2f* u_data = expected.ptr<Point2f>();
- size_t count = expected.cols * expected.rows;
- for(size_t i = 0; i < count; i++ )
- circle(rgb, u_data[i], 4, Scalar(0, 240, 0), 1, LINE_AA);
- }
- putText(rgb, was_found ? "FOUND !!!" : "NOT FOUND", Point(5, 20), FONT_HERSHEY_PLAIN, 1, Scalar(0, 240, 0));
- imshow( "test", rgb ); while ((uchar)waitKey(0) != 'q') {};
- }
- #else
- #define show_points(...)
- #endif
- enum Pattern { CHESSBOARD,CHESSBOARD_SB,CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID};
- class CV_ChessboardDetectorTest : public cvtest::BaseTest
- {
- public:
- CV_ChessboardDetectorTest( Pattern pattern, int algorithmFlags = 0 );
- protected:
- void run(int);
- void run_batch(const string& filename);
- bool checkByGenerator();
- bool checkByGeneratorHighAccuracy();
- // wraps calls based on the given pattern
- bool findChessboardCornersWrapper(InputArray image, Size patternSize, OutputArray corners,int flags);
- Pattern pattern;
- int algorithmFlags;
- };
- CV_ChessboardDetectorTest::CV_ChessboardDetectorTest( Pattern _pattern, int _algorithmFlags )
- {
- pattern = _pattern;
- algorithmFlags = _algorithmFlags;
- }
- double calcError(const vector<Point2f>& v, const Mat& u)
- {
- int count_exp = u.cols * u.rows;
- const Point2f* u_data = u.ptr<Point2f>();
- double err = std::numeric_limits<double>::max();
- for( int k = 0; k < 2; ++k )
- {
- double err1 = 0;
- for( int j = 0; j < count_exp; ++j )
- {
- int j1 = k == 0 ? j : count_exp - j - 1;
- double dx = fabs( v[j].x - u_data[j1].x );
- double dy = fabs( v[j].y - u_data[j1].y );
- #if defined(_L2_ERR)
- err1 += dx*dx + dy*dy;
- #else
- dx = MAX( dx, dy );
- if( dx > err1 )
- err1 = dx;
- #endif //_L2_ERR
- //printf("dx = %f\n", dx);
- }
- //printf("\n");
- err = min(err, err1);
- }
- #if defined(_L2_ERR)
- err = sqrt(err/count_exp);
- #endif //_L2_ERR
- return err;
- }
- const double rough_success_error_level = 2.5;
- const double precise_success_error_level = 2;
- /* ///////////////////// chess_corner_test ///////////////////////// */
- void CV_ChessboardDetectorTest::run( int /*start_from */)
- {
- ts->set_failed_test_info( cvtest::TS::OK );
- /*if (!checkByGenerator())
- return;*/
- switch( pattern )
- {
- case CHESSBOARD_SB:
- checkByGeneratorHighAccuracy(); // not supported by CHESSBOARD
- /* fallthrough */
- case CHESSBOARD:
- checkByGenerator();
- if (ts->get_err_code() != cvtest::TS::OK)
- {
- break;
- }
- run_batch("negative_list.dat");
- if (ts->get_err_code() != cvtest::TS::OK)
- {
- break;
- }
- run_batch("chessboard_list.dat");
- if (ts->get_err_code() != cvtest::TS::OK)
- {
- break;
- }
- run_batch("chessboard_list_subpixel.dat");
- break;
- case CIRCLES_GRID:
- run_batch("circles_list.dat");
- break;
- case ASYMMETRIC_CIRCLES_GRID:
- run_batch("acircles_list.dat");
- break;
- }
- }
- void CV_ChessboardDetectorTest::run_batch( const string& filename )
- {
- ts->printf(cvtest::TS::LOG, "\nRunning batch %s\n", filename.c_str());
- //#define WRITE_POINTS 1
- #ifndef WRITE_POINTS
- double max_rough_error = 0, max_precise_error = 0;
- #endif
- string folder;
- switch( pattern )
- {
- case CHESSBOARD:
- case CHESSBOARD_SB:
- folder = string(ts->get_data_path()) + "cv/cameracalibration/";
- break;
- case CIRCLES_GRID:
- folder = string(ts->get_data_path()) + "cv/cameracalibration/circles/";
- break;
- case ASYMMETRIC_CIRCLES_GRID:
- folder = string(ts->get_data_path()) + "cv/cameracalibration/asymmetric_circles/";
- break;
- }
- FileStorage fs( folder + filename, FileStorage::READ );
- FileNode board_list = fs["boards"];
- if( !fs.isOpened() || board_list.empty() || !board_list.isSeq() || board_list.size() % 2 != 0 )
- {
- ts->printf( cvtest::TS::LOG, "%s can not be read or is not valid\n", (folder + filename).c_str() );
- ts->printf( cvtest::TS::LOG, "fs.isOpened=%d, board_list.empty=%d, board_list.isSeq=%d,board_list.size()%2=%d\n",
- fs.isOpened(), (int)board_list.empty(), board_list.isSeq(), board_list.size()%2);
- ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
- return;
- }
- int progress = 0;
- int max_idx = (int)board_list.size()/2;
- double sum_error = 0.0;
- int count = 0;
- for(int idx = 0; idx < max_idx; ++idx )
- {
- ts->update_context( this, idx, true );
- /* read the image */
- String img_file = board_list[idx * 2];
- Mat gray = imread( folder + img_file, 0);
- if( gray.empty() )
- {
- ts->printf( cvtest::TS::LOG, "one of chessboard images can't be read: %s\n", img_file.c_str() );
- ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
- return;
- }
- String _filename = folder + (String)board_list[idx * 2 + 1];
- bool doesContatinChessboard;
- float sharpness;
- Mat expected;
- {
- FileStorage fs1(_filename, FileStorage::READ);
- fs1["corners"] >> expected;
- fs1["isFound"] >> doesContatinChessboard;
- fs1["sharpness"] >> sharpness ;
- fs1.release();
- }
- size_t count_exp = static_cast<size_t>(expected.cols * expected.rows);
- Size pattern_size = expected.size();
- vector<Point2f> v;
- int flags = 0;
- switch( pattern )
- {
- case CHESSBOARD:
- flags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE;
- break;
- case CIRCLES_GRID:
- case CHESSBOARD_SB:
- case ASYMMETRIC_CIRCLES_GRID:
- default:
- flags = 0;
- }
- bool result = findChessboardCornersWrapper(gray, pattern_size,v,flags);
- if(result && sharpness && (pattern == CHESSBOARD_SB || pattern == CHESSBOARD))
- {
- Scalar s= estimateChessboardSharpness(gray,pattern_size,v);
- if(fabs(s[0] - sharpness) > 0.1)
- {
- ts->printf(cvtest::TS::LOG, "chessboard image has a wrong sharpness in %s. Expected %f but measured %f\n", img_file.c_str(),sharpness,s[0]);
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- show_points( gray, expected, v, result );
- return;
- }
- }
- if(result ^ doesContatinChessboard || (doesContatinChessboard && v.size() != count_exp))
- {
- ts->printf( cvtest::TS::LOG, "chessboard is detected incorrectly in %s\n", img_file.c_str() );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- show_points( gray, expected, v, result );
- return;
- }
- if( result )
- {
- #ifndef WRITE_POINTS
- double err = calcError(v, expected);
- max_rough_error = MAX( max_rough_error, err );
- #endif
- if( pattern == CHESSBOARD )
- cornerSubPix( gray, v, Size(5, 5), Size(-1,-1), TermCriteria(TermCriteria::EPS|TermCriteria::MAX_ITER, 30, 0.1));
- //find4QuadCornerSubpix(gray, v, Size(5, 5));
- show_points( gray, expected, v, result );
- #ifndef WRITE_POINTS
- // printf("called find4QuadCornerSubpix\n");
- err = calcError(v, expected);
- sum_error += err;
- count++;
- if( err > precise_success_error_level )
- {
- ts->printf( cvtest::TS::LOG, "Image %s: bad accuracy of adjusted corners %f\n", img_file.c_str(), err );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- return;
- }
- ts->printf(cvtest::TS::LOG, "Error on %s is %f\n", img_file.c_str(), err);
- max_precise_error = MAX( max_precise_error, err );
- #endif
- }
- else
- {
- show_points( gray, Mat(), v, result );
- }
- #ifdef WRITE_POINTS
- Mat mat_v(pattern_size, CV_32FC2, (void*)&v[0]);
- FileStorage fs(_filename, FileStorage::WRITE);
- fs << "isFound" << result;
- fs << "corners" << mat_v;
- fs.release();
- #endif
- progress = update_progress( progress, idx, max_idx, 0 );
- }
- if (count != 0)
- sum_error /= count;
- ts->printf(cvtest::TS::LOG, "Average error is %f (%d patterns have been found)\n", sum_error, count);
- }
- double calcErrorMinError(const Size& cornSz, const vector<Point2f>& corners_found, const vector<Point2f>& corners_generated)
- {
- Mat m1(cornSz, CV_32FC2, (Point2f*)&corners_generated[0]);
- Mat m2; flip(m1, m2, 0);
- Mat m3; flip(m1, m3, 1); m3 = m3.t(); flip(m3, m3, 1);
- Mat m4 = m1.t(); flip(m4, m4, 1);
- double min1 = min(calcError(corners_found, m1), calcError(corners_found, m2));
- double min2 = min(calcError(corners_found, m3), calcError(corners_found, m4));
- return min(min1, min2);
- }
- bool validateData(const ChessBoardGenerator& cbg, const Size& imgSz,
- const vector<Point2f>& corners_generated)
- {
- Size cornersSize = cbg.cornersSize();
- Mat_<Point2f> mat(cornersSize.height, cornersSize.width, (Point2f*)&corners_generated[0]);
- double minNeibDist = std::numeric_limits<double>::max();
- double tmp = 0;
- for(int i = 1; i < mat.rows - 2; ++i)
- for(int j = 1; j < mat.cols - 2; ++j)
- {
- const Point2f& cur = mat(i, j);
- tmp = cv::norm(cur - mat(i + 1, j + 1)); // TODO cvtest
- if (tmp < minNeibDist)
- minNeibDist = tmp;
- tmp = cv::norm(cur - mat(i - 1, j + 1)); // TODO cvtest
- if (tmp < minNeibDist)
- minNeibDist = tmp;
- tmp = cv::norm(cur - mat(i + 1, j - 1)); // TODO cvtest
- if (tmp < minNeibDist)
- minNeibDist = tmp;
- tmp = cv::norm(cur - mat(i - 1, j - 1)); // TODO cvtest
- if (tmp < minNeibDist)
- minNeibDist = tmp;
- }
- const double threshold = 0.25;
- double cbsize = (max(cornersSize.width, cornersSize.height) + 1) * minNeibDist;
- int imgsize = min(imgSz.height, imgSz.width);
- return imgsize * threshold < cbsize;
- }
- bool CV_ChessboardDetectorTest::findChessboardCornersWrapper(InputArray image, Size patternSize, OutputArray corners,int flags)
- {
- switch(pattern)
- {
- case CHESSBOARD:
- return findChessboardCorners(image,patternSize,corners,flags);
- case CHESSBOARD_SB:
- // check default settings until flags have been specified
- return findChessboardCornersSB(image,patternSize,corners,0);
- case ASYMMETRIC_CIRCLES_GRID:
- flags |= CALIB_CB_ASYMMETRIC_GRID | algorithmFlags;
- return findCirclesGrid(image, patternSize,corners,flags);
- case CIRCLES_GRID:
- flags |= CALIB_CB_SYMMETRIC_GRID;
- return findCirclesGrid(image, patternSize,corners,flags);
- default:
- ts->printf( cvtest::TS::LOG, "Internal Error: unsupported chessboard pattern" );
- ts->set_failed_test_info( cvtest::TS::FAIL_GENERIC);
- }
- return false;
- }
- bool CV_ChessboardDetectorTest::checkByGenerator()
- {
- bool res = true;
- //theRNG() = 0x58e6e895b9913160;
- //cv::DefaultRngAuto dra;
- //theRNG() = *ts->get_rng();
- Mat bg(Size(800, 600), CV_8UC3, Scalar::all(255));
- randu(bg, Scalar::all(0), Scalar::all(255));
- GaussianBlur(bg, bg, Size(5, 5), 0.0);
- Mat_<float> camMat(3, 3);
- camMat << 300.f, 0.f, bg.cols/2.f, 0, 300.f, bg.rows/2.f, 0.f, 0.f, 1.f;
- Mat_<float> distCoeffs(1, 5);
- distCoeffs << 1.2f, 0.2f, 0.f, 0.f, 0.f;
- const Size sizes[] = { Size(6, 6), Size(8, 6), Size(11, 12), Size(5, 4) };
- const size_t sizes_num = sizeof(sizes)/sizeof(sizes[0]);
- const int test_num = 16;
- int progress = 0;
- for(int i = 0; i < test_num; ++i)
- {
- SCOPED_TRACE(cv::format("test_num=%d", test_num));
- progress = update_progress( progress, i, test_num, 0 );
- ChessBoardGenerator cbg(sizes[i % sizes_num]);
- vector<Point2f> corners_generated;
- Mat cb = cbg(bg, camMat, distCoeffs, corners_generated);
- if(!validateData(cbg, cb.size(), corners_generated))
- {
- ts->printf( cvtest::TS::LOG, "Chess board skipped - too small" );
- continue;
- }
- /*cb = cb * 0.8 + Scalar::all(30);
- GaussianBlur(cb, cb, Size(3, 3), 0.8); */
- //cv::addWeighted(cb, 0.8, bg, 0.2, 20, cb);
- //cv::namedWindow("CB"); cv::imshow("CB", cb); cv::waitKey();
- vector<Point2f> corners_found;
- int flags = i % 8; // need to check branches for all flags
- bool found = findChessboardCornersWrapper(cb, cbg.cornersSize(), corners_found, flags);
- if (!found)
- {
- ts->printf( cvtest::TS::LOG, "Chess board corners not found\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- res = false;
- return res;
- }
- double err = calcErrorMinError(cbg.cornersSize(), corners_found, corners_generated);
- EXPECT_LE(err, rough_success_error_level) << "bad accuracy of corner guesses";
- #if 0
- if (err >= rough_success_error_level)
- {
- imshow("cb", cb);
- Mat cb_corners = cb.clone();
- cv::drawChessboardCorners(cb_corners, cbg.cornersSize(), Mat(corners_found), found);
- imshow("corners", cb_corners);
- waitKey(0);
- }
- #endif
- }
- /* ***** negative ***** */
- {
- vector<Point2f> corners_found;
- bool found = findChessboardCornersWrapper(bg, Size(8, 7), corners_found,0);
- if (found)
- res = false;
- ChessBoardGenerator cbg(Size(8, 7));
- vector<Point2f> cg;
- Mat cb = cbg(bg, camMat, distCoeffs, cg);
- found = findChessboardCornersWrapper(cb, Size(3, 4), corners_found,0);
- if (found)
- res = false;
- Point2f c = std::accumulate(cg.begin(), cg.end(), Point2f(), std::plus<Point2f>()) * (1.f/cg.size());
- Mat_<double> aff(2, 3);
- aff << 1.0, 0.0, -(double)c.x, 0.0, 1.0, 0.0;
- Mat sh;
- warpAffine(cb, sh, aff, cb.size());
- found = findChessboardCornersWrapper(sh, cbg.cornersSize(), corners_found,0);
- if (found)
- res = false;
- vector< vector<Point> > cnts(1);
- vector<Point>& cnt = cnts[0];
- cnt.push_back(cg[ 0]); cnt.push_back(cg[0+2]);
- cnt.push_back(cg[7+0]); cnt.push_back(cg[7+2]);
- cv::drawContours(cb, cnts, -1, Scalar::all(128), FILLED);
- found = findChessboardCornersWrapper(cb, cbg.cornersSize(), corners_found,0);
- if (found)
- res = false;
- cv::drawChessboardCorners(cb, cbg.cornersSize(), Mat(corners_found), found);
- }
- return res;
- }
- // generates artificial checkerboards using warpPerspective which supports
- // subpixel rendering. The transformation is found by transferring corners to
- // the camera image using a virtual plane.
- bool CV_ChessboardDetectorTest::checkByGeneratorHighAccuracy()
- {
- // draw 2D pattern
- cv::Size pattern_size(6,5);
- int cell_size = 80;
- bool bwhite = true;
- cv::Mat image = cv::Mat::ones((pattern_size.height+3)*cell_size,(pattern_size.width+3)*cell_size,CV_8UC1)*255;
- cv::Mat pimage = image(Rect(cell_size,cell_size,(pattern_size.width+1)*cell_size,(pattern_size.height+1)*cell_size));
- pimage = 0;
- for(int row=0;row<=pattern_size.height;++row)
- {
- int y = int(cell_size*row+0.5F);
- bool bwhite2 = bwhite;
- for(int col=0;col<=pattern_size.width;++col)
- {
- if(bwhite2)
- {
- int x = int(cell_size*col+0.5F);
- pimage(cv::Rect(x,y,cell_size,cell_size)) = 255;
- }
- bwhite2 = !bwhite2;
- }
- bwhite = !bwhite;
- }
- // generate 2d points
- std::vector<Point2f> pts1,pts2,pts1_all,pts2_all;
- std::vector<Point3f> pts3d;
- for(int row=0;row<pattern_size.height;++row)
- {
- int y = int(cell_size*(row+2));
- for(int col=0;col<pattern_size.width;++col)
- {
- int x = int(cell_size*(col+2));
- pts1_all.push_back(cv::Point2f(x-0.5F,y-0.5F));
- }
- }
- // back project chessboard corners to a virtual plane
- double fx = 500;
- double fy = 500;
- cv::Point2f center(250,250);
- double fxi = 1.0/fx;
- double fyi = 1.0/fy;
- for(auto &&pt : pts1_all)
- {
- // calc camera ray
- cv::Vec3f ray(float((pt.x-center.x)*fxi),float((pt.y-center.y)*fyi),1.0F);
- ray /= cv::norm(ray);
- // intersect ray with virtual plane
- cv::Scalar plane(0,0,1,-1);
- cv::Vec3f n(float(plane(0)),float(plane(1)),float(plane(2)));
- cv::Point3f p0(0,0,0);
- cv::Point3f l0(0,0,0); // camera center in world coordinates
- p0.z = float(-plane(3)/plane(2));
- double val1 = ray.dot(n);
- if(val1 == 0)
- {
- ts->printf( cvtest::TS::LOG, "Internal Error: ray and plane are parallel" );
- ts->set_failed_test_info( cvtest::TS::FAIL_GENERIC);
- return false;
- }
- pts3d.push_back(Point3f(ray/val1*cv::Vec3f((p0-l0)).dot(n))+l0);
- }
- // generate multiple rotations
- for(int i=15;i<90;i=i+15)
- {
- // project 3d points to new camera
- Vec3f rvec(0.0F,0.05F,float(float(i)/180.0*CV_PI));
- Vec3f tvec(0,0,0);
- cv::Mat k = (cv::Mat_<double>(3,3) << fx/2,0,center.x*2, 0,fy/2,center.y, 0,0,1);
- cv::projectPoints(pts3d,rvec,tvec,k,cv::Mat(),pts2_all);
- // get perspective transform using four correspondences and wrap original image
- pts1.clear();
- pts2.clear();
- pts1.push_back(pts1_all[0]);
- pts1.push_back(pts1_all[pattern_size.width-1]);
- pts1.push_back(pts1_all[pattern_size.width*pattern_size.height-1]);
- pts1.push_back(pts1_all[pattern_size.width*(pattern_size.height-1)]);
- pts2.push_back(pts2_all[0]);
- pts2.push_back(pts2_all[pattern_size.width-1]);
- pts2.push_back(pts2_all[pattern_size.width*pattern_size.height-1]);
- pts2.push_back(pts2_all[pattern_size.width*(pattern_size.height-1)]);
- Mat m2 = getPerspectiveTransform(pts1,pts2);
- Mat out(image.size(),image.type());
- warpPerspective(image,out,m2,out.size());
- // find checkerboard
- vector<Point2f> corners_found;
- bool found = findChessboardCornersWrapper(out,pattern_size,corners_found,0);
- if (!found)
- {
- ts->printf( cvtest::TS::LOG, "Chess board corners not found\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- return false;
- }
- double err = calcErrorMinError(pattern_size,corners_found,pts2_all);
- if(err > 0.08)
- {
- ts->printf( cvtest::TS::LOG, "bad accuracy of corner guesses" );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- return false;
- }
- //cv::cvtColor(out,out,cv::COLOR_GRAY2BGR);
- //cv::drawChessboardCorners(out,pattern_size,corners_found,true);
- //cv::imshow("img",out);
- //cv::waitKey(-1);
- }
- return true;
- }
- TEST(Calib3d_ChessboardDetector, accuracy) { CV_ChessboardDetectorTest test( CHESSBOARD ); test.safe_run(); }
- TEST(Calib3d_ChessboardDetector2, accuracy) { CV_ChessboardDetectorTest test( CHESSBOARD_SB ); test.safe_run(); }
- TEST(Calib3d_CirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( CIRCLES_GRID ); test.safe_run(); }
- TEST(Calib3d_AsymmetricCirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID ); test.safe_run(); }
- #ifdef HAVE_OPENCV_FLANN
- TEST(Calib3d_AsymmetricCirclesPatternDetectorWithClustering, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID, CALIB_CB_CLUSTERING ); test.safe_run(); }
- #endif
- TEST(Calib3d_CirclesPatternDetectorWithClustering, accuracy)
- {
- cv::String dataDir = string(TS::ptr()->get_data_path()) + "cv/cameracalibration/circles/";
- cv::Mat expected;
- FileStorage fs(dataDir + "circles_corners15.dat", FileStorage::READ);
- fs["corners"] >> expected;
- fs.release();
- cv::Mat image = cv::imread(dataDir + "circles15.png");
- std::vector<Point2f> centers;
- cv::findCirclesGrid(image, Size(10, 8), centers, CALIB_CB_SYMMETRIC_GRID | CALIB_CB_CLUSTERING);
- ASSERT_EQ(expected.total(), centers.size());
- double error = calcError(centers, expected);
- ASSERT_LE(error, precise_success_error_level);
- }
- TEST(Calib3d_AsymmetricCirclesPatternDetector, regression_18713)
- {
- float pts_[][2] = {
- { 166.5, 107 }, { 146, 236 }, { 147, 92 }, { 184, 162 }, { 150, 185.5 },
- { 215, 105 }, { 270.5, 186 }, { 159, 142 }, { 6, 205.5 }, { 32, 148.5 },
- { 126, 163.5 }, { 181, 208.5 }, { 240.5, 62 }, { 84.5, 76.5 }, { 190, 120.5 },
- { 10, 189 }, { 266, 104 }, { 307.5, 207.5 }, { 97, 184 }, { 116.5, 210 },
- { 114, 139 }, { 84.5, 233 }, { 269.5, 139 }, { 136, 126.5 }, { 120, 107.5 },
- { 129.5, 65.5 }, { 212.5, 140.5 }, { 204.5, 60.5 }, { 207.5, 241 }, { 61.5, 94.5 },
- { 186.5, 61.5 }, { 220, 63 }, { 239, 120.5 }, { 212, 186 }, { 284, 87.5 },
- { 62, 114.5 }, { 283, 61.5 }, { 238.5, 88.5 }, { 243, 159 }, { 245, 208 },
- { 298.5, 158.5 }, { 57, 129 }, { 156.5, 63.5 }, { 192, 90.5 }, { 281, 235.5 },
- { 172, 62.5 }, { 291.5, 119.5 }, { 90, 127 }, { 68.5, 166.5 }, { 108.5, 83.5 },
- { 22, 176 }
- };
- Mat candidates(51, 1, CV_32FC2, (void*)pts_);
- Size patternSize(4, 9);
- std::vector< Point2f > result;
- bool res = false;
- // issue reports about hangs
- EXPECT_NO_THROW(res = findCirclesGrid(candidates, patternSize, result, CALIB_CB_ASYMMETRIC_GRID, Ptr<FeatureDetector>()/*blobDetector=NULL*/));
- EXPECT_FALSE(res);
- if (cvtest::debugLevel > 0)
- {
- std::cout << Mat(candidates) << std::endl;
- std::cout << Mat(result) << std::endl;
- Mat img(Size(400, 300), CV_8UC3, Scalar::all(0));
- std::vector< Point2f > centers;
- candidates.copyTo(centers);
- for (size_t i = 0; i < centers.size(); i++)
- {
- const Point2f& pt = centers[i];
- //printf("{ %g, %g }, \n", pt.x, pt.y);
- circle(img, pt, 5, Scalar(0, 255, 0));
- }
- for (size_t i = 0; i < result.size(); i++)
- {
- const Point2f& pt = result[i];
- circle(img, pt, 10, Scalar(0, 0, 255));
- }
- imwrite("test_18713.png", img);
- if (cvtest::debugLevel >= 10)
- {
- imshow("result", img);
- waitKey();
- }
- }
- }
- TEST(Calib3d_AsymmetricCirclesPatternDetector, regression_19498)
- {
- float pts_[121][2] = {
- { 84.7462f, 404.504f }, { 49.1586f, 404.092f }, { 12.3362f, 403.434f }, { 102.542f, 386.214f }, { 67.6042f, 385.475f },
- { 31.4982f, 384.569f }, { 141.231f, 377.856f }, { 332.834f, 370.745f }, { 85.7663f, 367.261f }, { 50.346f, 366.051f },
- { 13.7726f, 364.663f }, { 371.746f, 362.011f }, { 68.8543f, 347.883f }, { 32.9334f, 346.263f }, { 331.926f, 343.291f },
- { 351.535f, 338.112f }, { 51.7951f, 328.247f }, { 15.4613f, 326.095f }, { 311.719f, 319.578f }, { 330.947f, 313.708f },
- { 256.706f, 307.584f }, { 34.6834f, 308.167f }, { 291.085f, 295.429f }, { 17.4316f, 287.824f }, { 252.928f, 277.92f },
- { 270.19f, 270.93f }, { 288.473f, 263.484f }, { 216.401f, 260.94f }, { 232.195f, 253.656f }, { 266.757f, 237.708f },
- { 211.323f, 229.005f }, { 227.592f, 220.498f }, { 154.749f, 188.52f }, { 222.52f, 184.906f }, { 133.85f, 163.968f },
- { 200.024f, 158.05f }, { 147.485f, 153.643f }, { 161.967f, 142.633f }, { 177.396f, 131.059f }, { 125.909f, 128.116f },
- { 139.817f, 116.333f }, { 91.8639f, 114.454f }, { 104.343f, 102.542f }, { 117.635f, 89.9116f }, { 70.9465f, 89.4619f },
- { 82.8524f, 76.7862f }, { 131.738f, 76.4741f }, { 95.5012f, 63.3351f }, { 109.034f, 49.0424f }, { 314.886f, 374.711f },
- { 351.735f, 366.489f }, { 279.113f, 357.05f }, { 313.371f, 348.131f }, { 260.123f, 335.271f }, { 276.346f, 330.325f },
- { 293.588f, 325.133f }, { 240.86f, 313.143f }, { 273.436f, 301.667f }, { 206.762f, 296.574f }, { 309.877f, 288.796f },
- { 187.46f, 274.319f }, { 201.521f, 267.804f }, { 248.973f, 245.918f }, { 181.644f, 244.655f }, { 196.025f, 237.045f },
- { 148.41f, 229.131f }, { 161.604f, 221.215f }, { 175.455f, 212.873f }, { 244.748f, 211.459f }, { 128.661f, 206.109f },
- { 190.217f, 204.108f }, { 141.346f, 197.568f }, { 205.876f, 194.781f }, { 168.937f, 178.948f }, { 121.006f, 173.714f },
- { 183.998f, 168.806f }, { 88.9095f, 159.731f }, { 100.559f, 149.867f }, { 58.553f, 146.47f }, { 112.849f, 139.302f },
- { 80.0968f, 125.74f }, { 39.24f, 123.671f }, { 154.582f, 103.85f }, { 59.7699f, 101.49f }, { 266.334f, 385.387f },
- { 234.053f, 368.718f }, { 263.347f, 361.184f }, { 244.763f, 339.958f }, { 198.16f, 328.214f }, { 211.675f, 323.407f },
- { 225.905f, 318.426f }, { 192.98f, 302.119f }, { 221.267f, 290.693f }, { 161.437f, 286.46f }, { 236.656f, 284.476f },
- { 168.023f, 251.799f }, { 105.385f, 221.988f }, { 116.724f, 214.25f }, { 97.2959f, 191.81f }, { 108.89f, 183.05f },
- { 77.9896f, 169.242f }, { 48.6763f, 156.088f }, { 68.9635f, 136.415f }, { 29.8484f, 133.886f }, { 49.1966f, 112.826f },
- { 113.059f, 29.003f }, { 251.698f, 388.562f }, { 281.689f, 381.929f }, { 297.875f, 378.518f }, { 248.376f, 365.025f },
- { 295.791f, 352.763f }, { 216.176f, 348.586f }, { 230.143f, 344.443f }, { 179.89f, 307.457f }, { 174.083f, 280.51f },
- { 142.867f, 265.085f }, { 155.127f, 258.692f }, { 124.187f, 243.661f }, { 136.01f, 236.553f }, { 86.4651f, 200.13f },
- { 67.5711f, 178.221f }
- };
- Mat candidates(121, 1, CV_32FC2, (void*)pts_);
- Size patternSize(13, 8);
- std::vector< Point2f > result;
- bool res = false;
- EXPECT_NO_THROW(res = findCirclesGrid(candidates, patternSize, result, CALIB_CB_SYMMETRIC_GRID, Ptr<FeatureDetector>()/*blobDetector=NULL*/));
- EXPECT_FALSE(res);
- }
- }} // namespace
- /* End of file. */
|