123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- from types import SimpleNamespace
- from .image_handler import ImageHandler
- from .feature_detector import FeatureDetector
- from .feature_matcher import FeatureMatcher
- from .subsetter import Subsetter
- from .camera_estimator import CameraEstimator
- from .camera_adjuster import CameraAdjuster
- from .camera_wave_corrector import WaveCorrector
- from .warper import Warper
- from .cropper import Cropper
- from .exposure_error_compensator import ExposureErrorCompensator
- from .seam_finder import SeamFinder
- from .blender import Blender
- from .timelapser import Timelapser
- from .stitching_error import StitchingError
- class Stitcher:
- DEFAULT_SETTINGS = {
- "medium_megapix": ImageHandler.DEFAULT_MEDIUM_MEGAPIX,
- "detector": FeatureDetector.DEFAULT_DETECTOR,
- "nfeatures": 500,
- "matcher_type": FeatureMatcher.DEFAULT_MATCHER,
- "range_width": FeatureMatcher.DEFAULT_RANGE_WIDTH,
- "try_use_gpu": False,
- "match_conf": None,
- "confidence_threshold": Subsetter.DEFAULT_CONFIDENCE_THRESHOLD,
- "matches_graph_dot_file": Subsetter.DEFAULT_MATCHES_GRAPH_DOT_FILE,
- "estimator": CameraEstimator.DEFAULT_CAMERA_ESTIMATOR,
- "adjuster": CameraAdjuster.DEFAULT_CAMERA_ADJUSTER,
- "refinement_mask": CameraAdjuster.DEFAULT_REFINEMENT_MASK,
- "wave_correct_kind": WaveCorrector.DEFAULT_WAVE_CORRECTION,
- "warper_type": Warper.DEFAULT_WARP_TYPE,
- "low_megapix": ImageHandler.DEFAULT_LOW_MEGAPIX,
- "crop": Cropper.DEFAULT_CROP,
- "compensator": ExposureErrorCompensator.DEFAULT_COMPENSATOR,
- "nr_feeds": ExposureErrorCompensator.DEFAULT_NR_FEEDS,
- "block_size": ExposureErrorCompensator.DEFAULT_BLOCK_SIZE,
- "finder": SeamFinder.DEFAULT_SEAM_FINDER,
- "final_megapix": ImageHandler.DEFAULT_FINAL_MEGAPIX,
- "blender_type": Blender.DEFAULT_BLENDER,
- "blend_strength": Blender.DEFAULT_BLEND_STRENGTH,
- "timelapse": Timelapser.DEFAULT_TIMELAPSE}
- def __init__(self, **kwargs):
- self.initialize_stitcher(**kwargs)
- def initialize_stitcher(self, **kwargs):
- self.settings = Stitcher.DEFAULT_SETTINGS.copy()
- self.validate_kwargs(kwargs)
- self.settings.update(kwargs)
- args = SimpleNamespace(**self.settings)
- self.img_handler = ImageHandler(args.medium_megapix,
- args.low_megapix,
- args.final_megapix)
- self.detector = \
- FeatureDetector(args.detector, nfeatures=args.nfeatures)
- match_conf = \
- FeatureMatcher.get_match_conf(args.match_conf, args.detector)
- self.matcher = FeatureMatcher(args.matcher_type, args.range_width,
- try_use_gpu=args.try_use_gpu,
- match_conf=match_conf)
- self.subsetter = \
- Subsetter(args.confidence_threshold, args.matches_graph_dot_file)
- self.camera_estimator = CameraEstimator(args.estimator)
- self.camera_adjuster = \
- CameraAdjuster(args.adjuster, args.refinement_mask)
- self.wave_corrector = WaveCorrector(args.wave_correct_kind)
- self.warper = Warper(args.warper_type)
- self.cropper = Cropper(args.crop)
- self.compensator = \
- ExposureErrorCompensator(args.compensator, args.nr_feeds,
- args.block_size)
- self.seam_finder = SeamFinder(args.finder)
- self.blender = Blender(args.blender_type, args.blend_strength)
- self.timelapser = Timelapser(args.timelapse)
- def stitch(self, img_names):
- self.initialize_registration(img_names)
- imgs = self.resize_medium_resolution()
- features = self.find_features(imgs)
- matches = self.match_features(features)
- imgs, features, matches = self.subset(imgs, features, matches)
- cameras = self.estimate_camera_parameters(features, matches)
- cameras = self.refine_camera_parameters(features, matches, cameras)
- cameras = self.perform_wave_correction(cameras)
- self.estimate_scale(cameras)
- imgs = self.resize_low_resolution(imgs)
- imgs, masks, corners, sizes = self.warp_low_resolution(imgs, cameras)
- self.prepare_cropper(imgs, masks, corners, sizes)
- imgs, masks, corners, sizes = \
- self.crop_low_resolution(imgs, masks, corners, sizes)
- self.estimate_exposure_errors(corners, imgs, masks)
- seam_masks = self.find_seam_masks(imgs, corners, masks)
- imgs = self.resize_final_resolution()
- imgs, masks, corners, sizes = self.warp_final_resolution(imgs, cameras)
- imgs, masks, corners, sizes = \
- self.crop_final_resolution(imgs, masks, corners, sizes)
- self.set_masks(masks)
- imgs = self.compensate_exposure_errors(corners, imgs)
- seam_masks = self.resize_seam_masks(seam_masks)
- self.initialize_composition(corners, sizes)
- self.blend_images(imgs, seam_masks, corners)
- return self.create_final_panorama()
- def initialize_registration(self, img_names):
- self.img_handler.set_img_names(img_names)
- def resize_medium_resolution(self):
- return list(self.img_handler.resize_to_medium_resolution())
- def find_features(self, imgs):
- return [self.detector.detect_features(img) for img in imgs]
- def match_features(self, features):
- return self.matcher.match_features(features)
- def subset(self, imgs, features, matches):
- names, sizes, imgs, features, matches = \
- self.subsetter.subset(self.img_handler.img_names,
- self.img_handler.img_sizes,
- imgs, features, matches)
- self.img_handler.img_names, self.img_handler.img_sizes = names, sizes
- return imgs, features, matches
- def estimate_camera_parameters(self, features, matches):
- return self.camera_estimator.estimate(features, matches)
- def refine_camera_parameters(self, features, matches, cameras):
- return self.camera_adjuster.adjust(features, matches, cameras)
- def perform_wave_correction(self, cameras):
- return self.wave_corrector.correct(cameras)
- def estimate_scale(self, cameras):
- self.warper.set_scale(cameras)
- def resize_low_resolution(self, imgs=None):
- return list(self.img_handler.resize_to_low_resolution(imgs))
- def warp_low_resolution(self, imgs, cameras):
- sizes = self.img_handler.get_low_img_sizes()
- camera_aspect = self.img_handler.get_medium_to_low_ratio()
- imgs, masks, corners, sizes = \
- self.warp(imgs, cameras, sizes, camera_aspect)
- return list(imgs), list(masks), corners, sizes
- def warp_final_resolution(self, imgs, cameras):
- sizes = self.img_handler.get_final_img_sizes()
- camera_aspect = self.img_handler.get_medium_to_final_ratio()
- return self.warp(imgs, cameras, sizes, camera_aspect)
- def warp(self, imgs, cameras, sizes, aspect=1):
- imgs = self.warper.warp_images(imgs, cameras, aspect)
- masks = self.warper.create_and_warp_masks(sizes, cameras, aspect)
- corners, sizes = self.warper.warp_rois(sizes, cameras, aspect)
- return imgs, masks, corners, sizes
- def prepare_cropper(self, imgs, masks, corners, sizes):
- self.cropper.prepare(imgs, masks, corners, sizes)
- def crop_low_resolution(self, imgs, masks, corners, sizes):
- imgs, masks, corners, sizes = self.crop(imgs, masks, corners, sizes)
- return list(imgs), list(masks), corners, sizes
- def crop_final_resolution(self, imgs, masks, corners, sizes):
- lir_aspect = self.img_handler.get_low_to_final_ratio()
- return self.crop(imgs, masks, corners, sizes, lir_aspect)
- def crop(self, imgs, masks, corners, sizes, aspect=1):
- masks = self.cropper.crop_images(masks, aspect)
- imgs = self.cropper.crop_images(imgs, aspect)
- corners, sizes = self.cropper.crop_rois(corners, sizes, aspect)
- return imgs, masks, corners, sizes
- def estimate_exposure_errors(self, corners, imgs, masks):
- self.compensator.feed(corners, imgs, masks)
- def find_seam_masks(self, imgs, corners, masks):
- return self.seam_finder.find(imgs, corners, masks)
- def resize_final_resolution(self):
- return self.img_handler.resize_to_final_resolution()
- def compensate_exposure_errors(self, corners, imgs):
- for idx, (corner, img) in enumerate(zip(corners, imgs)):
- yield self.compensator.apply(idx, corner, img, self.get_mask(idx))
- def resize_seam_masks(self, seam_masks):
- for idx, seam_mask in enumerate(seam_masks):
- yield SeamFinder.resize(seam_mask, self.get_mask(idx))
- def set_masks(self, mask_generator):
- self.masks = mask_generator
- self.mask_index = -1
- def get_mask(self, idx):
- if idx == self.mask_index + 1:
- self.mask_index += 1
- self.mask = next(self.masks)
- return self.mask
- elif idx == self.mask_index:
- return self.mask
- else:
- raise StitchingError("Invalid Mask Index!")
- def initialize_composition(self, corners, sizes):
- if self.timelapser.do_timelapse:
- self.timelapser.initialize(corners, sizes)
- else:
- self.blender.prepare(corners, sizes)
- def blend_images(self, imgs, masks, corners):
- for idx, (img, mask, corner) in enumerate(zip(imgs, masks, corners)):
- if self.timelapser.do_timelapse:
- self.timelapser.process_and_save_frame(
- self.img_handler.img_names[idx], img, corner
- )
- else:
- self.blender.feed(img, mask, corner)
- def create_final_panorama(self):
- if not self.timelapser.do_timelapse:
- panorama, _ = self.blender.blend()
- return panorama
- @staticmethod
- def validate_kwargs(kwargs):
- for arg in kwargs:
- if arg not in Stitcher.DEFAULT_SETTINGS:
- raise StitchingError("Invalid Argument: " + arg)
|