calibController.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. // This file is part of OpenCV project.
  2. // It is subject to the license terms in the LICENSE file found in the top-level directory
  3. // of this distribution and at http://opencv.org/license.html.
  4. #include "calibController.hpp"
  5. #include <algorithm>
  6. #include <cmath>
  7. #include <ctime>
  8. #include <opencv2/calib3d.hpp>
  9. #include <opencv2/imgproc.hpp>
  10. double calib::calibController::estimateCoverageQuality()
  11. {
  12. int gridSize = 10;
  13. int xGridStep = mCalibData->imageSize.width / gridSize;
  14. int yGridStep = mCalibData->imageSize.height / gridSize;
  15. std::vector<int> pointsInCell(gridSize*gridSize);
  16. std::fill(pointsInCell.begin(), pointsInCell.end(), 0);
  17. for(std::vector<std::vector<cv::Point2f> >::iterator it = mCalibData->imagePoints.begin(); it != mCalibData->imagePoints.end(); ++it)
  18. for(std::vector<cv::Point2f>::iterator pointIt = (*it).begin(); pointIt != (*it).end(); ++pointIt) {
  19. int i = (int)((*pointIt).x / xGridStep);
  20. int j = (int)((*pointIt).y / yGridStep);
  21. pointsInCell[i*gridSize + j]++;
  22. }
  23. for(std::vector<cv::Mat>::iterator it = mCalibData->allCharucoCorners.begin(); it != mCalibData->allCharucoCorners.end(); ++it)
  24. for(int l = 0; l < (*it).size[0]; l++) {
  25. int i = (int)((*it).at<float>(l, 0) / xGridStep);
  26. int j = (int)((*it).at<float>(l, 1) / yGridStep);
  27. pointsInCell[i*gridSize + j]++;
  28. }
  29. cv::Mat mean, stdDev;
  30. cv::meanStdDev(pointsInCell, mean, stdDev);
  31. return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7);
  32. }
  33. calib::calibController::calibController()
  34. {
  35. mCalibFlags = 0;
  36. }
  37. calib::calibController::calibController(cv::Ptr<calib::calibrationData> data, int initialFlags, bool autoTuning, int minFramesNum) :
  38. mCalibData(data)
  39. {
  40. mCalibFlags = initialFlags;
  41. mNeedTuning = autoTuning;
  42. mMinFramesNum = minFramesNum;
  43. mConfIntervalsState = false;
  44. mCoverageQualityState = false;
  45. }
  46. void calib::calibController::updateState()
  47. {
  48. if(mCalibData->cameraMatrix.total()) {
  49. const double relErrEps = 0.05;
  50. bool fConfState = false, cConfState = false, dConfState = true;
  51. if(sigmaMult*mCalibData->stdDeviations.at<double>(0) / mCalibData->cameraMatrix.at<double>(0,0) < relErrEps &&
  52. sigmaMult*mCalibData->stdDeviations.at<double>(1) / mCalibData->cameraMatrix.at<double>(1,1) < relErrEps)
  53. fConfState = true;
  54. if(sigmaMult*mCalibData->stdDeviations.at<double>(2) / mCalibData->cameraMatrix.at<double>(0,2) < relErrEps &&
  55. sigmaMult*mCalibData->stdDeviations.at<double>(3) / mCalibData->cameraMatrix.at<double>(1,2) < relErrEps)
  56. cConfState = true;
  57. for(int i = 0; i < 5; i++)
  58. if(mCalibData->stdDeviations.at<double>(4+i) / fabs(mCalibData->distCoeffs.at<double>(i)) > 1)
  59. dConfState = false;
  60. mConfIntervalsState = fConfState && cConfState && dConfState;
  61. }
  62. if(getFramesNumberState())
  63. mCoverageQualityState = estimateCoverageQuality() > 1.8 ? true : false;
  64. if (getFramesNumberState() && mNeedTuning) {
  65. if( !(mCalibFlags & cv::CALIB_FIX_ASPECT_RATIO) &&
  66. mCalibData->cameraMatrix.total()) {
  67. double fDiff = fabs(mCalibData->cameraMatrix.at<double>(0,0) -
  68. mCalibData->cameraMatrix.at<double>(1,1));
  69. if (fDiff < 3*mCalibData->stdDeviations.at<double>(0) &&
  70. fDiff < 3*mCalibData->stdDeviations.at<double>(1)) {
  71. mCalibFlags |= cv::CALIB_FIX_ASPECT_RATIO;
  72. mCalibData->cameraMatrix.at<double>(0,0) =
  73. mCalibData->cameraMatrix.at<double>(1,1);
  74. }
  75. }
  76. if(!(mCalibFlags & cv::CALIB_ZERO_TANGENT_DIST)) {
  77. const double eps = 0.005;
  78. if(fabs(mCalibData->distCoeffs.at<double>(2)) < eps &&
  79. fabs(mCalibData->distCoeffs.at<double>(3)) < eps)
  80. mCalibFlags |= cv::CALIB_ZERO_TANGENT_DIST;
  81. }
  82. if(!(mCalibFlags & cv::CALIB_FIX_K1)) {
  83. const double eps = 0.005;
  84. if(fabs(mCalibData->distCoeffs.at<double>(0)) < eps)
  85. mCalibFlags |= cv::CALIB_FIX_K1;
  86. }
  87. if(!(mCalibFlags & cv::CALIB_FIX_K2)) {
  88. const double eps = 0.005;
  89. if(fabs(mCalibData->distCoeffs.at<double>(1)) < eps)
  90. mCalibFlags |= cv::CALIB_FIX_K2;
  91. }
  92. if(!(mCalibFlags & cv::CALIB_FIX_K3)) {
  93. const double eps = 0.005;
  94. if(fabs(mCalibData->distCoeffs.at<double>(4)) < eps)
  95. mCalibFlags |= cv::CALIB_FIX_K3;
  96. }
  97. }
  98. }
  99. bool calib::calibController::getCommonCalibrationState() const
  100. {
  101. int rating = (int)getFramesNumberState() + (int)getConfidenceIntrervalsState() +
  102. (int)getRMSState() + (int)mCoverageQualityState;
  103. return rating == 4;
  104. }
  105. bool calib::calibController::getFramesNumberState() const
  106. {
  107. return std::max(mCalibData->imagePoints.size(), mCalibData->allCharucoCorners.size()) > mMinFramesNum;
  108. }
  109. bool calib::calibController::getConfidenceIntrervalsState() const
  110. {
  111. return mConfIntervalsState;
  112. }
  113. bool calib::calibController::getRMSState() const
  114. {
  115. return mCalibData->totalAvgErr < 0.5;
  116. }
  117. int calib::calibController::getNewFlags() const
  118. {
  119. return mCalibFlags;
  120. }
  121. //////////////////// calibDataController
  122. double calib::calibDataController::estimateGridSubsetQuality(size_t excludedIndex)
  123. {
  124. {
  125. int gridSize = 10;
  126. int xGridStep = mCalibData->imageSize.width / gridSize;
  127. int yGridStep = mCalibData->imageSize.height / gridSize;
  128. std::vector<int> pointsInCell(gridSize*gridSize);
  129. std::fill(pointsInCell.begin(), pointsInCell.end(), 0);
  130. for(size_t k = 0; k < mCalibData->imagePoints.size(); k++)
  131. if(k != excludedIndex)
  132. for(std::vector<cv::Point2f>::iterator pointIt = mCalibData->imagePoints[k].begin(); pointIt != mCalibData->imagePoints[k].end(); ++pointIt) {
  133. int i = (int)((*pointIt).x / xGridStep);
  134. int j = (int)((*pointIt).y / yGridStep);
  135. pointsInCell[i*gridSize + j]++;
  136. }
  137. for(size_t k = 0; k < mCalibData->allCharucoCorners.size(); k++)
  138. if(k != excludedIndex)
  139. for(int l = 0; l < mCalibData->allCharucoCorners[k].size[0]; l++) {
  140. int i = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 0) / xGridStep);
  141. int j = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 1) / yGridStep);
  142. pointsInCell[i*gridSize + j]++;
  143. }
  144. cv::Mat mean, stdDev;
  145. cv::meanStdDev(pointsInCell, mean, stdDev);
  146. return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7);
  147. }
  148. }
  149. calib::calibDataController::calibDataController(cv::Ptr<calib::calibrationData> data, int maxFrames, double convParameter) :
  150. mCalibData(data), mParamsFileName("CamParams.xml")
  151. {
  152. mMaxFramesNum = maxFrames;
  153. mAlpha = convParameter;
  154. }
  155. calib::calibDataController::calibDataController()
  156. {
  157. }
  158. void calib::calibDataController::filterFrames()
  159. {
  160. size_t numberOfFrames = std::max(mCalibData->allCharucoIds.size(), mCalibData->imagePoints.size());
  161. CV_Assert(numberOfFrames == mCalibData->perViewErrors.total());
  162. if(numberOfFrames >= mMaxFramesNum) {
  163. double worstValue = -HUGE_VAL, maxQuality = estimateGridSubsetQuality(numberOfFrames);
  164. size_t worstElemIndex = 0;
  165. for(size_t i = 0; i < numberOfFrames; i++) {
  166. double gridQDelta = estimateGridSubsetQuality(i) - maxQuality;
  167. double currentValue = mCalibData->perViewErrors.at<double>((int)i)*mAlpha + gridQDelta*(1. - mAlpha);
  168. if(currentValue > worstValue) {
  169. worstValue = currentValue;
  170. worstElemIndex = i;
  171. }
  172. }
  173. showOverlayMessage(cv::format("Frame %zu is worst", worstElemIndex + 1));
  174. if(mCalibData->imagePoints.size()) {
  175. mCalibData->imagePoints.erase(mCalibData->imagePoints.begin() + worstElemIndex);
  176. mCalibData->objectPoints.erase(mCalibData->objectPoints.begin() + worstElemIndex);
  177. }
  178. else {
  179. mCalibData->allCharucoCorners.erase(mCalibData->allCharucoCorners.begin() + worstElemIndex);
  180. mCalibData->allCharucoIds.erase(mCalibData->allCharucoIds.begin() + worstElemIndex);
  181. }
  182. cv::Mat newErrorsVec = cv::Mat((int)numberOfFrames - 1, 1, CV_64F);
  183. std::copy(mCalibData->perViewErrors.ptr<double>(0),
  184. mCalibData->perViewErrors.ptr<double>((int)worstElemIndex), newErrorsVec.ptr<double>(0));
  185. if((int)worstElemIndex < (int)numberOfFrames-1) {
  186. std::copy(mCalibData->perViewErrors.ptr<double>((int)worstElemIndex + 1), mCalibData->perViewErrors.ptr<double>((int)numberOfFrames),
  187. newErrorsVec.ptr<double>((int)worstElemIndex));
  188. }
  189. mCalibData->perViewErrors = newErrorsVec;
  190. }
  191. }
  192. void calib::calibDataController::setParametersFileName(const std::string &name)
  193. {
  194. mParamsFileName = name;
  195. }
  196. void calib::calibDataController::deleteLastFrame()
  197. {
  198. if( !mCalibData->imagePoints.empty()) {
  199. mCalibData->imagePoints.pop_back();
  200. mCalibData->objectPoints.pop_back();
  201. }
  202. if (!mCalibData->allCharucoCorners.empty()) {
  203. mCalibData->allCharucoCorners.pop_back();
  204. mCalibData->allCharucoIds.pop_back();
  205. }
  206. if(!mParamsStack.empty()) {
  207. mCalibData->cameraMatrix = (mParamsStack.top()).cameraMatrix;
  208. mCalibData->distCoeffs = (mParamsStack.top()).distCoeffs;
  209. mCalibData->stdDeviations = (mParamsStack.top()).stdDeviations;
  210. mCalibData->totalAvgErr = (mParamsStack.top()).avgError;
  211. mParamsStack.pop();
  212. }
  213. }
  214. void calib::calibDataController::rememberCurrentParameters()
  215. {
  216. cv::Mat oldCameraMat, oldDistcoeefs, oldStdDevs;
  217. mCalibData->cameraMatrix.copyTo(oldCameraMat);
  218. mCalibData->distCoeffs.copyTo(oldDistcoeefs);
  219. mCalibData->stdDeviations.copyTo(oldStdDevs);
  220. mParamsStack.push(cameraParameters(oldCameraMat, oldDistcoeefs, oldStdDevs, mCalibData->totalAvgErr));
  221. }
  222. void calib::calibDataController::deleteAllData()
  223. {
  224. mCalibData->imagePoints.clear();
  225. mCalibData->objectPoints.clear();
  226. mCalibData->allCharucoCorners.clear();
  227. mCalibData->allCharucoIds.clear();
  228. mCalibData->cameraMatrix = mCalibData->distCoeffs = cv::Mat();
  229. mParamsStack = std::stack<cameraParameters>();
  230. rememberCurrentParameters();
  231. }
  232. bool calib::calibDataController::saveCurrentCameraParameters() const
  233. {
  234. bool success = false;
  235. if(mCalibData->cameraMatrix.total()) {
  236. cv::FileStorage parametersWriter(mParamsFileName, cv::FileStorage::WRITE);
  237. if(parametersWriter.isOpened()) {
  238. time_t rawtime;
  239. time(&rawtime);
  240. char buf[256];
  241. strftime(buf, sizeof(buf)-1, "%c", localtime(&rawtime));
  242. parametersWriter << "calibrationDate" << buf;
  243. parametersWriter << "framesCount" << std::max((int)mCalibData->objectPoints.size(), (int)mCalibData->allCharucoCorners.size());
  244. parametersWriter << "cameraResolution" << mCalibData->imageSize;
  245. parametersWriter << "cameraMatrix" << mCalibData->cameraMatrix;
  246. parametersWriter << "cameraMatrix_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(0, 4));
  247. parametersWriter << "dist_coeffs" << mCalibData->distCoeffs;
  248. parametersWriter << "dist_coeffs_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(4, 9));
  249. parametersWriter << "avg_reprojection_error" << mCalibData->totalAvgErr;
  250. parametersWriter.release();
  251. success = true;
  252. }
  253. }
  254. return success;
  255. }
  256. void calib::calibDataController::printParametersToConsole(std::ostream &output) const
  257. {
  258. const char* border = "---------------------------------------------------";
  259. output << border << std::endl;
  260. output << "Frames used for calibration: " << std::max(mCalibData->objectPoints.size(), mCalibData->allCharucoCorners.size())
  261. << " \t RMS = " << mCalibData->totalAvgErr << std::endl;
  262. if(mCalibData->cameraMatrix.at<double>(0,0) == mCalibData->cameraMatrix.at<double>(1,1))
  263. output << "F = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl;
  264. else
  265. output << "Fx = " << mCalibData->cameraMatrix.at<double>(0,0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(0) << " \t "
  266. << "Fy = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl;
  267. output << "Cx = " << mCalibData->cameraMatrix.at<double>(0,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(2) << " \t"
  268. << "Cy = " << mCalibData->cameraMatrix.at<double>(1,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(3) << std::endl;
  269. output << "K1 = " << mCalibData->distCoeffs.at<double>(0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(4) << std::endl;
  270. output << "K2 = " << mCalibData->distCoeffs.at<double>(1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(5) << std::endl;
  271. output << "K3 = " << mCalibData->distCoeffs.at<double>(4) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(8) << std::endl;
  272. output << "TD1 = " << mCalibData->distCoeffs.at<double>(2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(6) << std::endl;
  273. output << "TD2 = " << mCalibData->distCoeffs.at<double>(3) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(7) << std::endl;
  274. }
  275. void calib::calibDataController::updateUndistortMap()
  276. {
  277. cv::initUndistortRectifyMap(mCalibData->cameraMatrix, mCalibData->distCoeffs, cv::noArray(),
  278. cv::getOptimalNewCameraMatrix(mCalibData->cameraMatrix, mCalibData->distCoeffs, mCalibData->imageSize, 0.0, mCalibData->imageSize),
  279. mCalibData->imageSize, CV_16SC2, mCalibData->undistMap1, mCalibData->undistMap2);
  280. }