1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2004-2012, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHVEC_H
- #define INCLUDED_IMATHVEC_H
- //----------------------------------------------------
- //
- // 2D, 3D and 4D point/vector class templates
- //
- //----------------------------------------------------
- #include "ImathExc.h"
- #include "ImathLimits.h"
- #include "ImathMath.h"
- #include "ImathNamespace.h"
- #include <iostream>
- #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
- // suppress exception specification warnings
- #pragma warning(push)
- #pragma warning(disable:4290)
- #endif
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- template <class T> class Vec2;
- template <class T> class Vec3;
- template <class T> class Vec4;
- enum InfException {INF_EXCEPTION};
- template <class T> class Vec2
- {
- public:
- //-------------------
- // Access to elements
- //-------------------
- T x, y;
- T & operator [] (int i);
- const T & operator [] (int i) const;
- //-------------
- // Constructors
- //-------------
- Vec2 (); // no initialization
- explicit Vec2 (T a); // (a a)
- Vec2 (T a, T b); // (a b)
- //---------------------------------
- // Copy constructors and assignment
- //---------------------------------
- Vec2 (const Vec2 &v);
- template <class S> Vec2 (const Vec2<S> &v);
- const Vec2 & operator = (const Vec2 &v);
- //----------------------
- // Compatibility with Sb
- //----------------------
- template <class S>
- void setValue (S a, S b);
- template <class S>
- void setValue (const Vec2<S> &v);
- template <class S>
- void getValue (S &a, S &b) const;
- template <class S>
- void getValue (Vec2<S> &v) const;
- T * getValue ();
- const T * getValue () const;
-
- //---------
- // Equality
- //---------
- template <class S>
- bool operator == (const Vec2<S> &v) const;
- template <class S>
- bool operator != (const Vec2<S> &v) const;
- //-----------------------------------------------------------------------
- // Compare two vectors and test if they are "approximately equal":
- //
- // equalWithAbsError (v, e)
- //
- // Returns true if the coefficients of this and v are the same with
- // an absolute error of no more than e, i.e., for all i
- //
- // abs (this[i] - v[i]) <= e
- //
- // equalWithRelError (v, e)
- //
- // Returns true if the coefficients of this and v are the same with
- // a relative error of no more than e, i.e., for all i
- //
- // abs (this[i] - v[i]) <= e * abs (this[i])
- //-----------------------------------------------------------------------
- bool equalWithAbsError (const Vec2<T> &v, T e) const;
- bool equalWithRelError (const Vec2<T> &v, T e) const;
- //------------
- // Dot product
- //------------
- T dot (const Vec2 &v) const;
- T operator ^ (const Vec2 &v) const;
- //------------------------------------------------
- // Right-handed cross product, i.e. z component of
- // Vec3 (this->x, this->y, 0) % Vec3 (v.x, v.y, 0)
- //------------------------------------------------
- T cross (const Vec2 &v) const;
- T operator % (const Vec2 &v) const;
- //------------------------
- // Component-wise addition
- //------------------------
- const Vec2 & operator += (const Vec2 &v);
- Vec2 operator + (const Vec2 &v) const;
- //---------------------------
- // Component-wise subtraction
- //---------------------------
- const Vec2 & operator -= (const Vec2 &v);
- Vec2 operator - (const Vec2 &v) const;
- //------------------------------------
- // Component-wise multiplication by -1
- //------------------------------------
- Vec2 operator - () const;
- const Vec2 & negate ();
- //------------------------------
- // Component-wise multiplication
- //------------------------------
- const Vec2 & operator *= (const Vec2 &v);
- const Vec2 & operator *= (T a);
- Vec2 operator * (const Vec2 &v) const;
- Vec2 operator * (T a) const;
- //------------------------
- // Component-wise division
- //------------------------
- const Vec2 & operator /= (const Vec2 &v);
- const Vec2 & operator /= (T a);
- Vec2 operator / (const Vec2 &v) const;
- Vec2 operator / (T a) const;
- //----------------------------------------------------------------
- // Length and normalization: If v.length() is 0.0, v.normalize()
- // and v.normalized() produce a null vector; v.normalizeExc() and
- // v.normalizedExc() throw a NullVecExc.
- // v.normalizeNonNull() and v.normalizedNonNull() are slightly
- // faster than the other normalization routines, but if v.length()
- // is 0.0, the result is undefined.
- //----------------------------------------------------------------
- T length () const;
- T length2 () const;
- const Vec2 & normalize (); // modifies *this
- const Vec2 & normalizeExc ();
- const Vec2 & normalizeNonNull ();
- Vec2<T> normalized () const; // does not modify *this
- Vec2<T> normalizedExc () const;
- Vec2<T> normalizedNonNull () const;
- //--------------------------------------------------------
- // Number of dimensions, i.e. number of elements in a Vec2
- //--------------------------------------------------------
- static unsigned int dimensions() {return 2;}
- //-------------------------------------------------
- // Limitations of type T (see also class limits<T>)
- //-------------------------------------------------
- static T baseTypeMin() {return limits<T>::min();}
- static T baseTypeMax() {return limits<T>::max();}
- static T baseTypeSmallest() {return limits<T>::smallest();}
- static T baseTypeEpsilon() {return limits<T>::epsilon();}
- //--------------------------------------------------------------
- // Base type -- in templates, which accept a parameter, V, which
- // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can
- // refer to T as V::BaseType
- //--------------------------------------------------------------
- typedef T BaseType;
- private:
- T lengthTiny () const;
- };
- template <class T> class Vec3
- {
- public:
- //-------------------
- // Access to elements
- //-------------------
- T x, y, z;
- T & operator [] (int i);
- const T & operator [] (int i) const;
- //-------------
- // Constructors
- //-------------
- Vec3 (); // no initialization
- explicit Vec3 (T a); // (a a a)
- Vec3 (T a, T b, T c); // (a b c)
- //---------------------------------
- // Copy constructors and assignment
- //---------------------------------
- Vec3 (const Vec3 &v);
- template <class S> Vec3 (const Vec3<S> &v);
- const Vec3 & operator = (const Vec3 &v);
- //---------------------------------------------------------
- // Vec4 to Vec3 conversion, divides x, y and z by w:
- //
- // The one-argument conversion function divides by w even
- // if w is zero. The result depends on how the environment
- // handles floating-point exceptions.
- //
- // The two-argument version thows an InfPointExc exception
- // if w is zero or if division by w would overflow.
- //---------------------------------------------------------
- template <class S> explicit Vec3 (const Vec4<S> &v);
- template <class S> explicit Vec3 (const Vec4<S> &v, InfException);
- //----------------------
- // Compatibility with Sb
- //----------------------
- template <class S>
- void setValue (S a, S b, S c);
- template <class S>
- void setValue (const Vec3<S> &v);
- template <class S>
- void getValue (S &a, S &b, S &c) const;
- template <class S>
- void getValue (Vec3<S> &v) const;
- T * getValue();
- const T * getValue() const;
- //---------
- // Equality
- //---------
- template <class S>
- bool operator == (const Vec3<S> &v) const;
- template <class S>
- bool operator != (const Vec3<S> &v) const;
- //-----------------------------------------------------------------------
- // Compare two vectors and test if they are "approximately equal":
- //
- // equalWithAbsError (v, e)
- //
- // Returns true if the coefficients of this and v are the same with
- // an absolute error of no more than e, i.e., for all i
- //
- // abs (this[i] - v[i]) <= e
- //
- // equalWithRelError (v, e)
- //
- // Returns true if the coefficients of this and v are the same with
- // a relative error of no more than e, i.e., for all i
- //
- // abs (this[i] - v[i]) <= e * abs (this[i])
- //-----------------------------------------------------------------------
- bool equalWithAbsError (const Vec3<T> &v, T e) const;
- bool equalWithRelError (const Vec3<T> &v, T e) const;
- //------------
- // Dot product
- //------------
- T dot (const Vec3 &v) const;
- T operator ^ (const Vec3 &v) const;
- //---------------------------
- // Right-handed cross product
- //---------------------------
- Vec3 cross (const Vec3 &v) const;
- const Vec3 & operator %= (const Vec3 &v);
- Vec3 operator % (const Vec3 &v) const;
- //------------------------
- // Component-wise addition
- //------------------------
- const Vec3 & operator += (const Vec3 &v);
- Vec3 operator + (const Vec3 &v) const;
- //---------------------------
- // Component-wise subtraction
- //---------------------------
- const Vec3 & operator -= (const Vec3 &v);
- Vec3 operator - (const Vec3 &v) const;
- //------------------------------------
- // Component-wise multiplication by -1
- //------------------------------------
- Vec3 operator - () const;
- const Vec3 & negate ();
- //------------------------------
- // Component-wise multiplication
- //------------------------------
- const Vec3 & operator *= (const Vec3 &v);
- const Vec3 & operator *= (T a);
- Vec3 operator * (const Vec3 &v) const;
- Vec3 operator * (T a) const;
- //------------------------
- // Component-wise division
- //------------------------
- const Vec3 & operator /= (const Vec3 &v);
- const Vec3 & operator /= (T a);
- Vec3 operator / (const Vec3 &v) const;
- Vec3 operator / (T a) const;
- //----------------------------------------------------------------
- // Length and normalization: If v.length() is 0.0, v.normalize()
- // and v.normalized() produce a null vector; v.normalizeExc() and
- // v.normalizedExc() throw a NullVecExc.
- // v.normalizeNonNull() and v.normalizedNonNull() are slightly
- // faster than the other normalization routines, but if v.length()
- // is 0.0, the result is undefined.
- //----------------------------------------------------------------
- T length () const;
- T length2 () const;
- const Vec3 & normalize (); // modifies *this
- const Vec3 & normalizeExc ();
- const Vec3 & normalizeNonNull ();
- Vec3<T> normalized () const; // does not modify *this
- Vec3<T> normalizedExc () const;
- Vec3<T> normalizedNonNull () const;
- //--------------------------------------------------------
- // Number of dimensions, i.e. number of elements in a Vec3
- //--------------------------------------------------------
- static unsigned int dimensions() {return 3;}
- //-------------------------------------------------
- // Limitations of type T (see also class limits<T>)
- //-------------------------------------------------
- static T baseTypeMin() {return limits<T>::min();}
- static T baseTypeMax() {return limits<T>::max();}
- static T baseTypeSmallest() {return limits<T>::smallest();}
- static T baseTypeEpsilon() {return limits<T>::epsilon();}
- //--------------------------------------------------------------
- // Base type -- in templates, which accept a parameter, V, which
- // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can
- // refer to T as V::BaseType
- //--------------------------------------------------------------
- typedef T BaseType;
- private:
- T lengthTiny () const;
- };
- template <class T> class Vec4
- {
- public:
- //-------------------
- // Access to elements
- //-------------------
- T x, y, z, w;
- T & operator [] (int i);
- const T & operator [] (int i) const;
- //-------------
- // Constructors
- //-------------
- Vec4 (); // no initialization
- explicit Vec4 (T a); // (a a a a)
- Vec4 (T a, T b, T c, T d); // (a b c d)
- //---------------------------------
- // Copy constructors and assignment
- //---------------------------------
- Vec4 (const Vec4 &v);
- template <class S> Vec4 (const Vec4<S> &v);
- const Vec4 & operator = (const Vec4 &v);
- //-------------------------------------
- // Vec3 to Vec4 conversion, sets w to 1
- //-------------------------------------
- template <class S> explicit Vec4 (const Vec3<S> &v);
- //---------
- // Equality
- //---------
- template <class S>
- bool operator == (const Vec4<S> &v) const;
- template <class S>
- bool operator != (const Vec4<S> &v) const;
- //-----------------------------------------------------------------------
- // Compare two vectors and test if they are "approximately equal":
- //
- // equalWithAbsError (v, e)
- //
- // Returns true if the coefficients of this and v are the same with
- // an absolute error of no more than e, i.e., for all i
- //
- // abs (this[i] - v[i]) <= e
- //
- // equalWithRelError (v, e)
- //
- // Returns true if the coefficients of this and v are the same with
- // a relative error of no more than e, i.e., for all i
- //
- // abs (this[i] - v[i]) <= e * abs (this[i])
- //-----------------------------------------------------------------------
- bool equalWithAbsError (const Vec4<T> &v, T e) const;
- bool equalWithRelError (const Vec4<T> &v, T e) const;
- //------------
- // Dot product
- //------------
- T dot (const Vec4 &v) const;
- T operator ^ (const Vec4 &v) const;
- //-----------------------------------
- // Cross product is not defined in 4D
- //-----------------------------------
- //------------------------
- // Component-wise addition
- //------------------------
- const Vec4 & operator += (const Vec4 &v);
- Vec4 operator + (const Vec4 &v) const;
- //---------------------------
- // Component-wise subtraction
- //---------------------------
- const Vec4 & operator -= (const Vec4 &v);
- Vec4 operator - (const Vec4 &v) const;
- //------------------------------------
- // Component-wise multiplication by -1
- //------------------------------------
- Vec4 operator - () const;
- const Vec4 & negate ();
- //------------------------------
- // Component-wise multiplication
- //------------------------------
- const Vec4 & operator *= (const Vec4 &v);
- const Vec4 & operator *= (T a);
- Vec4 operator * (const Vec4 &v) const;
- Vec4 operator * (T a) const;
- //------------------------
- // Component-wise division
- //------------------------
- const Vec4 & operator /= (const Vec4 &v);
- const Vec4 & operator /= (T a);
- Vec4 operator / (const Vec4 &v) const;
- Vec4 operator / (T a) const;
- //----------------------------------------------------------------
- // Length and normalization: If v.length() is 0.0, v.normalize()
- // and v.normalized() produce a null vector; v.normalizeExc() and
- // v.normalizedExc() throw a NullVecExc.
- // v.normalizeNonNull() and v.normalizedNonNull() are slightly
- // faster than the other normalization routines, but if v.length()
- // is 0.0, the result is undefined.
- //----------------------------------------------------------------
- T length () const;
- T length2 () const;
- const Vec4 & normalize (); // modifies *this
- const Vec4 & normalizeExc ();
- const Vec4 & normalizeNonNull ();
- Vec4<T> normalized () const; // does not modify *this
- Vec4<T> normalizedExc () const;
- Vec4<T> normalizedNonNull () const;
- //--------------------------------------------------------
- // Number of dimensions, i.e. number of elements in a Vec4
- //--------------------------------------------------------
- static unsigned int dimensions() {return 4;}
- //-------------------------------------------------
- // Limitations of type T (see also class limits<T>)
- //-------------------------------------------------
- static T baseTypeMin() {return limits<T>::min();}
- static T baseTypeMax() {return limits<T>::max();}
- static T baseTypeSmallest() {return limits<T>::smallest();}
- static T baseTypeEpsilon() {return limits<T>::epsilon();}
- //--------------------------------------------------------------
- // Base type -- in templates, which accept a parameter, V, which
- // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can
- // refer to T as V::BaseType
- //--------------------------------------------------------------
- typedef T BaseType;
- private:
- T lengthTiny () const;
- };
- //--------------
- // Stream output
- //--------------
- template <class T>
- std::ostream & operator << (std::ostream &s, const Vec2<T> &v);
- template <class T>
- std::ostream & operator << (std::ostream &s, const Vec3<T> &v);
- template <class T>
- std::ostream & operator << (std::ostream &s, const Vec4<T> &v);
- //----------------------------------------------------
- // Reverse multiplication: S * Vec2<T> and S * Vec3<T>
- //----------------------------------------------------
- template <class T> Vec2<T> operator * (T a, const Vec2<T> &v);
- template <class T> Vec3<T> operator * (T a, const Vec3<T> &v);
- template <class T> Vec4<T> operator * (T a, const Vec4<T> &v);
- //-------------------------
- // Typedefs for convenience
- //-------------------------
- typedef Vec2 <short> V2s;
- typedef Vec2 <int> V2i;
- typedef Vec2 <float> V2f;
- typedef Vec2 <double> V2d;
- typedef Vec3 <short> V3s;
- typedef Vec3 <int> V3i;
- typedef Vec3 <float> V3f;
- typedef Vec3 <double> V3d;
- typedef Vec4 <short> V4s;
- typedef Vec4 <int> V4i;
- typedef Vec4 <float> V4f;
- typedef Vec4 <double> V4d;
- //-------------------------------------------
- // Specializations for VecN<short>, VecN<int>
- //-------------------------------------------
- // Vec2<short>
- template <> short
- Vec2<short>::length () const;
- template <> const Vec2<short> &
- Vec2<short>::normalize ();
- template <> const Vec2<short> &
- Vec2<short>::normalizeExc ();
- template <> const Vec2<short> &
- Vec2<short>::normalizeNonNull ();
- template <> Vec2<short>
- Vec2<short>::normalized () const;
- template <> Vec2<short>
- Vec2<short>::normalizedExc () const;
- template <> Vec2<short>
- Vec2<short>::normalizedNonNull () const;
- // Vec2<int>
- template <> int
- Vec2<int>::length () const;
- template <> const Vec2<int> &
- Vec2<int>::normalize ();
- template <> const Vec2<int> &
- Vec2<int>::normalizeExc ();
- template <> const Vec2<int> &
- Vec2<int>::normalizeNonNull ();
- template <> Vec2<int>
- Vec2<int>::normalized () const;
- template <> Vec2<int>
- Vec2<int>::normalizedExc () const;
- template <> Vec2<int>
- Vec2<int>::normalizedNonNull () const;
- // Vec3<short>
- template <> short
- Vec3<short>::length () const;
- template <> const Vec3<short> &
- Vec3<short>::normalize ();
- template <> const Vec3<short> &
- Vec3<short>::normalizeExc ();
- template <> const Vec3<short> &
- Vec3<short>::normalizeNonNull ();
- template <> Vec3<short>
- Vec3<short>::normalized () const;
- template <> Vec3<short>
- Vec3<short>::normalizedExc () const;
- template <> Vec3<short>
- Vec3<short>::normalizedNonNull () const;
- // Vec3<int>
- template <> int
- Vec3<int>::length () const;
- template <> const Vec3<int> &
- Vec3<int>::normalize ();
- template <> const Vec3<int> &
- Vec3<int>::normalizeExc ();
- template <> const Vec3<int> &
- Vec3<int>::normalizeNonNull ();
- template <> Vec3<int>
- Vec3<int>::normalized () const;
- template <> Vec3<int>
- Vec3<int>::normalizedExc () const;
- template <> Vec3<int>
- Vec3<int>::normalizedNonNull () const;
- // Vec4<short>
- template <> short
- Vec4<short>::length () const;
- template <> const Vec4<short> &
- Vec4<short>::normalize ();
- template <> const Vec4<short> &
- Vec4<short>::normalizeExc ();
- template <> const Vec4<short> &
- Vec4<short>::normalizeNonNull ();
- template <> Vec4<short>
- Vec4<short>::normalized () const;
- template <> Vec4<short>
- Vec4<short>::normalizedExc () const;
- template <> Vec4<short>
- Vec4<short>::normalizedNonNull () const;
- // Vec4<int>
- template <> int
- Vec4<int>::length () const;
- template <> const Vec4<int> &
- Vec4<int>::normalize ();
- template <> const Vec4<int> &
- Vec4<int>::normalizeExc ();
- template <> const Vec4<int> &
- Vec4<int>::normalizeNonNull ();
- template <> Vec4<int>
- Vec4<int>::normalized () const;
- template <> Vec4<int>
- Vec4<int>::normalizedExc () const;
- template <> Vec4<int>
- Vec4<int>::normalizedNonNull () const;
- //------------------------
- // Implementation of Vec2:
- //------------------------
- template <class T>
- inline T &
- Vec2<T>::operator [] (int i)
- {
- return (&x)[i];
- }
- template <class T>
- inline const T &
- Vec2<T>::operator [] (int i) const
- {
- return (&x)[i];
- }
- template <class T>
- inline
- Vec2<T>::Vec2 ()
- {
- // empty
- }
- template <class T>
- inline
- Vec2<T>::Vec2 (T a)
- {
- x = y = a;
- }
- template <class T>
- inline
- Vec2<T>::Vec2 (T a, T b)
- {
- x = a;
- y = b;
- }
- template <class T>
- inline
- Vec2<T>::Vec2 (const Vec2 &v)
- {
- x = v.x;
- y = v.y;
- }
- template <class T>
- template <class S>
- inline
- Vec2<T>::Vec2 (const Vec2<S> &v)
- {
- x = T (v.x);
- y = T (v.y);
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::operator = (const Vec2 &v)
- {
- x = v.x;
- y = v.y;
- return *this;
- }
- template <class T>
- template <class S>
- inline void
- Vec2<T>::setValue (S a, S b)
- {
- x = T (a);
- y = T (b);
- }
- template <class T>
- template <class S>
- inline void
- Vec2<T>::setValue (const Vec2<S> &v)
- {
- x = T (v.x);
- y = T (v.y);
- }
- template <class T>
- template <class S>
- inline void
- Vec2<T>::getValue (S &a, S &b) const
- {
- a = S (x);
- b = S (y);
- }
- template <class T>
- template <class S>
- inline void
- Vec2<T>::getValue (Vec2<S> &v) const
- {
- v.x = S (x);
- v.y = S (y);
- }
- template <class T>
- inline T *
- Vec2<T>::getValue()
- {
- return (T *) &x;
- }
- template <class T>
- inline const T *
- Vec2<T>::getValue() const
- {
- return (const T *) &x;
- }
- template <class T>
- template <class S>
- inline bool
- Vec2<T>::operator == (const Vec2<S> &v) const
- {
- return x == v.x && y == v.y;
- }
- template <class T>
- template <class S>
- inline bool
- Vec2<T>::operator != (const Vec2<S> &v) const
- {
- return x != v.x || y != v.y;
- }
- template <class T>
- bool
- Vec2<T>::equalWithAbsError (const Vec2<T> &v, T e) const
- {
- for (int i = 0; i < 2; i++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e))
- return false;
- return true;
- }
- template <class T>
- bool
- Vec2<T>::equalWithRelError (const Vec2<T> &v, T e) const
- {
- for (int i = 0; i < 2; i++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e))
- return false;
- return true;
- }
- template <class T>
- inline T
- Vec2<T>::dot (const Vec2 &v) const
- {
- return x * v.x + y * v.y;
- }
- template <class T>
- inline T
- Vec2<T>::operator ^ (const Vec2 &v) const
- {
- return dot (v);
- }
- template <class T>
- inline T
- Vec2<T>::cross (const Vec2 &v) const
- {
- return x * v.y - y * v.x;
- }
- template <class T>
- inline T
- Vec2<T>::operator % (const Vec2 &v) const
- {
- return x * v.y - y * v.x;
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::operator += (const Vec2 &v)
- {
- x += v.x;
- y += v.y;
- return *this;
- }
- template <class T>
- inline Vec2<T>
- Vec2<T>::operator + (const Vec2 &v) const
- {
- return Vec2 (x + v.x, y + v.y);
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::operator -= (const Vec2 &v)
- {
- x -= v.x;
- y -= v.y;
- return *this;
- }
- template <class T>
- inline Vec2<T>
- Vec2<T>::operator - (const Vec2 &v) const
- {
- return Vec2 (x - v.x, y - v.y);
- }
- template <class T>
- inline Vec2<T>
- Vec2<T>::operator - () const
- {
- return Vec2 (-x, -y);
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::negate ()
- {
- x = -x;
- y = -y;
- return *this;
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::operator *= (const Vec2 &v)
- {
- x *= v.x;
- y *= v.y;
- return *this;
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::operator *= (T a)
- {
- x *= a;
- y *= a;
- return *this;
- }
- template <class T>
- inline Vec2<T>
- Vec2<T>::operator * (const Vec2 &v) const
- {
- return Vec2 (x * v.x, y * v.y);
- }
- template <class T>
- inline Vec2<T>
- Vec2<T>::operator * (T a) const
- {
- return Vec2 (x * a, y * a);
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::operator /= (const Vec2 &v)
- {
- x /= v.x;
- y /= v.y;
- return *this;
- }
- template <class T>
- inline const Vec2<T> &
- Vec2<T>::operator /= (T a)
- {
- x /= a;
- y /= a;
- return *this;
- }
- template <class T>
- inline Vec2<T>
- Vec2<T>::operator / (const Vec2 &v) const
- {
- return Vec2 (x / v.x, y / v.y);
- }
- template <class T>
- inline Vec2<T>
- Vec2<T>::operator / (T a) const
- {
- return Vec2 (x / a, y / a);
- }
- template <class T>
- T
- Vec2<T>::lengthTiny () const
- {
- T absX = (x >= T (0))? x: -x;
- T absY = (y >= T (0))? y: -y;
-
- T max = absX;
- if (max < absY)
- max = absY;
- if (max == T (0))
- return T (0);
- //
- // Do not replace the divisions by max with multiplications by 1/max.
- // Computing 1/max can overflow but the divisions below will always
- // produce results less than or equal to 1.
- //
- absX /= max;
- absY /= max;
- return max * Math<T>::sqrt (absX * absX + absY * absY);
- }
- template <class T>
- inline T
- Vec2<T>::length () const
- {
- T length2 = dot (*this);
- if (length2 < T (2) * limits<T>::smallest())
- return lengthTiny();
- return Math<T>::sqrt (length2);
- }
- template <class T>
- inline T
- Vec2<T>::length2 () const
- {
- return dot (*this);
- }
- template <class T>
- const Vec2<T> &
- Vec2<T>::normalize ()
- {
- T l = length();
- if (l != T (0))
- {
- //
- // Do not replace the divisions by l with multiplications by 1/l.
- // Computing 1/l can overflow but the divisions below will always
- // produce results less than or equal to 1.
- //
- x /= l;
- y /= l;
- }
- return *this;
- }
- template <class T>
- const Vec2<T> &
- Vec2<T>::normalizeExc ()
- {
- T l = length();
- if (l == T (0))
- throw NullVecExc ("Cannot normalize null vector.");
- x /= l;
- y /= l;
- return *this;
- }
- template <class T>
- inline
- const Vec2<T> &
- Vec2<T>::normalizeNonNull ()
- {
- T l = length();
- x /= l;
- y /= l;
- return *this;
- }
- template <class T>
- Vec2<T>
- Vec2<T>::normalized () const
- {
- T l = length();
- if (l == T (0))
- return Vec2 (T (0));
- return Vec2 (x / l, y / l);
- }
- template <class T>
- Vec2<T>
- Vec2<T>::normalizedExc () const
- {
- T l = length();
- if (l == T (0))
- throw NullVecExc ("Cannot normalize null vector.");
- return Vec2 (x / l, y / l);
- }
- template <class T>
- inline
- Vec2<T>
- Vec2<T>::normalizedNonNull () const
- {
- T l = length();
- return Vec2 (x / l, y / l);
- }
- //-----------------------
- // Implementation of Vec3
- //-----------------------
- template <class T>
- inline T &
- Vec3<T>::operator [] (int i)
- {
- return (&x)[i];
- }
- template <class T>
- inline const T &
- Vec3<T>::operator [] (int i) const
- {
- return (&x)[i];
- }
- template <class T>
- inline
- Vec3<T>::Vec3 ()
- {
- // empty
- }
- template <class T>
- inline
- Vec3<T>::Vec3 (T a)
- {
- x = y = z = a;
- }
- template <class T>
- inline
- Vec3<T>::Vec3 (T a, T b, T c)
- {
- x = a;
- y = b;
- z = c;
- }
- template <class T>
- inline
- Vec3<T>::Vec3 (const Vec3 &v)
- {
- x = v.x;
- y = v.y;
- z = v.z;
- }
- template <class T>
- template <class S>
- inline
- Vec3<T>::Vec3 (const Vec3<S> &v)
- {
- x = T (v.x);
- y = T (v.y);
- z = T (v.z);
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator = (const Vec3 &v)
- {
- x = v.x;
- y = v.y;
- z = v.z;
- return *this;
- }
- template <class T>
- template <class S>
- inline
- Vec3<T>::Vec3 (const Vec4<S> &v)
- {
- x = T (v.x / v.w);
- y = T (v.y / v.w);
- z = T (v.z / v.w);
- }
- template <class T>
- template <class S>
- Vec3<T>::Vec3 (const Vec4<S> &v, InfException)
- {
- T vx = T (v.x);
- T vy = T (v.y);
- T vz = T (v.z);
- T vw = T (v.w);
- T absW = (vw >= T (0))? vw: -vw;
- if (absW < 1)
- {
- T m = baseTypeMax() * absW;
-
- if (vx <= -m || vx >= m || vy <= -m || vy >= m || vz <= -m || vz >= m)
- throw InfPointExc ("Cannot normalize point at infinity.");
- }
- x = vx / vw;
- y = vy / vw;
- z = vz / vw;
- }
- template <class T>
- template <class S>
- inline void
- Vec3<T>::setValue (S a, S b, S c)
- {
- x = T (a);
- y = T (b);
- z = T (c);
- }
- template <class T>
- template <class S>
- inline void
- Vec3<T>::setValue (const Vec3<S> &v)
- {
- x = T (v.x);
- y = T (v.y);
- z = T (v.z);
- }
- template <class T>
- template <class S>
- inline void
- Vec3<T>::getValue (S &a, S &b, S &c) const
- {
- a = S (x);
- b = S (y);
- c = S (z);
- }
- template <class T>
- template <class S>
- inline void
- Vec3<T>::getValue (Vec3<S> &v) const
- {
- v.x = S (x);
- v.y = S (y);
- v.z = S (z);
- }
- template <class T>
- inline T *
- Vec3<T>::getValue()
- {
- return (T *) &x;
- }
- template <class T>
- inline const T *
- Vec3<T>::getValue() const
- {
- return (const T *) &x;
- }
- template <class T>
- template <class S>
- inline bool
- Vec3<T>::operator == (const Vec3<S> &v) const
- {
- return x == v.x && y == v.y && z == v.z;
- }
- template <class T>
- template <class S>
- inline bool
- Vec3<T>::operator != (const Vec3<S> &v) const
- {
- return x != v.x || y != v.y || z != v.z;
- }
- template <class T>
- bool
- Vec3<T>::equalWithAbsError (const Vec3<T> &v, T e) const
- {
- for (int i = 0; i < 3; i++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e))
- return false;
- return true;
- }
- template <class T>
- bool
- Vec3<T>::equalWithRelError (const Vec3<T> &v, T e) const
- {
- for (int i = 0; i < 3; i++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e))
- return false;
- return true;
- }
- template <class T>
- inline T
- Vec3<T>::dot (const Vec3 &v) const
- {
- return x * v.x + y * v.y + z * v.z;
- }
- template <class T>
- inline T
- Vec3<T>::operator ^ (const Vec3 &v) const
- {
- return dot (v);
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::cross (const Vec3 &v) const
- {
- return Vec3 (y * v.z - z * v.y,
- z * v.x - x * v.z,
- x * v.y - y * v.x);
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator %= (const Vec3 &v)
- {
- T a = y * v.z - z * v.y;
- T b = z * v.x - x * v.z;
- T c = x * v.y - y * v.x;
- x = a;
- y = b;
- z = c;
- return *this;
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator % (const Vec3 &v) const
- {
- return Vec3 (y * v.z - z * v.y,
- z * v.x - x * v.z,
- x * v.y - y * v.x);
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator += (const Vec3 &v)
- {
- x += v.x;
- y += v.y;
- z += v.z;
- return *this;
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator + (const Vec3 &v) const
- {
- return Vec3 (x + v.x, y + v.y, z + v.z);
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator -= (const Vec3 &v)
- {
- x -= v.x;
- y -= v.y;
- z -= v.z;
- return *this;
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator - (const Vec3 &v) const
- {
- return Vec3 (x - v.x, y - v.y, z - v.z);
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator - () const
- {
- return Vec3 (-x, -y, -z);
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::negate ()
- {
- x = -x;
- y = -y;
- z = -z;
- return *this;
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator *= (const Vec3 &v)
- {
- x *= v.x;
- y *= v.y;
- z *= v.z;
- return *this;
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator *= (T a)
- {
- x *= a;
- y *= a;
- z *= a;
- return *this;
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator * (const Vec3 &v) const
- {
- return Vec3 (x * v.x, y * v.y, z * v.z);
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator * (T a) const
- {
- return Vec3 (x * a, y * a, z * a);
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator /= (const Vec3 &v)
- {
- x /= v.x;
- y /= v.y;
- z /= v.z;
- return *this;
- }
- template <class T>
- inline const Vec3<T> &
- Vec3<T>::operator /= (T a)
- {
- x /= a;
- y /= a;
- z /= a;
- return *this;
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator / (const Vec3 &v) const
- {
- return Vec3 (x / v.x, y / v.y, z / v.z);
- }
- template <class T>
- inline Vec3<T>
- Vec3<T>::operator / (T a) const
- {
- return Vec3 (x / a, y / a, z / a);
- }
- template <class T>
- T
- Vec3<T>::lengthTiny () const
- {
- T absX = (x >= T (0))? x: -x;
- T absY = (y >= T (0))? y: -y;
- T absZ = (z >= T (0))? z: -z;
-
- T max = absX;
- if (max < absY)
- max = absY;
- if (max < absZ)
- max = absZ;
- if (max == T (0))
- return T (0);
- //
- // Do not replace the divisions by max with multiplications by 1/max.
- // Computing 1/max can overflow but the divisions below will always
- // produce results less than or equal to 1.
- //
- absX /= max;
- absY /= max;
- absZ /= max;
- return max * Math<T>::sqrt (absX * absX + absY * absY + absZ * absZ);
- }
- template <class T>
- inline T
- Vec3<T>::length () const
- {
- T length2 = dot (*this);
- if (length2 < T (2) * limits<T>::smallest())
- return lengthTiny();
- return Math<T>::sqrt (length2);
- }
- template <class T>
- inline T
- Vec3<T>::length2 () const
- {
- return dot (*this);
- }
- template <class T>
- const Vec3<T> &
- Vec3<T>::normalize ()
- {
- T l = length();
- if (l != T (0))
- {
- //
- // Do not replace the divisions by l with multiplications by 1/l.
- // Computing 1/l can overflow but the divisions below will always
- // produce results less than or equal to 1.
- //
- x /= l;
- y /= l;
- z /= l;
- }
- return *this;
- }
- template <class T>
- const Vec3<T> &
- Vec3<T>::normalizeExc ()
- {
- T l = length();
- if (l == T (0))
- throw NullVecExc ("Cannot normalize null vector.");
- x /= l;
- y /= l;
- z /= l;
- return *this;
- }
- template <class T>
- inline
- const Vec3<T> &
- Vec3<T>::normalizeNonNull ()
- {
- T l = length();
- x /= l;
- y /= l;
- z /= l;
- return *this;
- }
- template <class T>
- Vec3<T>
- Vec3<T>::normalized () const
- {
- T l = length();
- if (l == T (0))
- return Vec3 (T (0));
- return Vec3 (x / l, y / l, z / l);
- }
- template <class T>
- Vec3<T>
- Vec3<T>::normalizedExc () const
- {
- T l = length();
- if (l == T (0))
- throw NullVecExc ("Cannot normalize null vector.");
- return Vec3 (x / l, y / l, z / l);
- }
- template <class T>
- inline
- Vec3<T>
- Vec3<T>::normalizedNonNull () const
- {
- T l = length();
- return Vec3 (x / l, y / l, z / l);
- }
- //-----------------------
- // Implementation of Vec4
- //-----------------------
- template <class T>
- inline T &
- Vec4<T>::operator [] (int i)
- {
- return (&x)[i];
- }
- template <class T>
- inline const T &
- Vec4<T>::operator [] (int i) const
- {
- return (&x)[i];
- }
- template <class T>
- inline
- Vec4<T>::Vec4 ()
- {
- // empty
- }
- template <class T>
- inline
- Vec4<T>::Vec4 (T a)
- {
- x = y = z = w = a;
- }
- template <class T>
- inline
- Vec4<T>::Vec4 (T a, T b, T c, T d)
- {
- x = a;
- y = b;
- z = c;
- w = d;
- }
- template <class T>
- inline
- Vec4<T>::Vec4 (const Vec4 &v)
- {
- x = v.x;
- y = v.y;
- z = v.z;
- w = v.w;
- }
- template <class T>
- template <class S>
- inline
- Vec4<T>::Vec4 (const Vec4<S> &v)
- {
- x = T (v.x);
- y = T (v.y);
- z = T (v.z);
- w = T (v.w);
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::operator = (const Vec4 &v)
- {
- x = v.x;
- y = v.y;
- z = v.z;
- w = v.w;
- return *this;
- }
- template <class T>
- template <class S>
- inline
- Vec4<T>::Vec4 (const Vec3<S> &v)
- {
- x = T (v.x);
- y = T (v.y);
- z = T (v.z);
- w = T (1);
- }
- template <class T>
- template <class S>
- inline bool
- Vec4<T>::operator == (const Vec4<S> &v) const
- {
- return x == v.x && y == v.y && z == v.z && w == v.w;
- }
- template <class T>
- template <class S>
- inline bool
- Vec4<T>::operator != (const Vec4<S> &v) const
- {
- return x != v.x || y != v.y || z != v.z || w != v.w;
- }
- template <class T>
- bool
- Vec4<T>::equalWithAbsError (const Vec4<T> &v, T e) const
- {
- for (int i = 0; i < 4; i++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e))
- return false;
- return true;
- }
- template <class T>
- bool
- Vec4<T>::equalWithRelError (const Vec4<T> &v, T e) const
- {
- for (int i = 0; i < 4; i++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e))
- return false;
- return true;
- }
- template <class T>
- inline T
- Vec4<T>::dot (const Vec4 &v) const
- {
- return x * v.x + y * v.y + z * v.z + w * v.w;
- }
- template <class T>
- inline T
- Vec4<T>::operator ^ (const Vec4 &v) const
- {
- return dot (v);
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::operator += (const Vec4 &v)
- {
- x += v.x;
- y += v.y;
- z += v.z;
- w += v.w;
- return *this;
- }
- template <class T>
- inline Vec4<T>
- Vec4<T>::operator + (const Vec4 &v) const
- {
- return Vec4 (x + v.x, y + v.y, z + v.z, w + v.w);
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::operator -= (const Vec4 &v)
- {
- x -= v.x;
- y -= v.y;
- z -= v.z;
- w -= v.w;
- return *this;
- }
- template <class T>
- inline Vec4<T>
- Vec4<T>::operator - (const Vec4 &v) const
- {
- return Vec4 (x - v.x, y - v.y, z - v.z, w - v.w);
- }
- template <class T>
- inline Vec4<T>
- Vec4<T>::operator - () const
- {
- return Vec4 (-x, -y, -z, -w);
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::negate ()
- {
- x = -x;
- y = -y;
- z = -z;
- w = -w;
- return *this;
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::operator *= (const Vec4 &v)
- {
- x *= v.x;
- y *= v.y;
- z *= v.z;
- w *= v.w;
- return *this;
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::operator *= (T a)
- {
- x *= a;
- y *= a;
- z *= a;
- w *= a;
- return *this;
- }
- template <class T>
- inline Vec4<T>
- Vec4<T>::operator * (const Vec4 &v) const
- {
- return Vec4 (x * v.x, y * v.y, z * v.z, w * v.w);
- }
- template <class T>
- inline Vec4<T>
- Vec4<T>::operator * (T a) const
- {
- return Vec4 (x * a, y * a, z * a, w * a);
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::operator /= (const Vec4 &v)
- {
- x /= v.x;
- y /= v.y;
- z /= v.z;
- w /= v.w;
- return *this;
- }
- template <class T>
- inline const Vec4<T> &
- Vec4<T>::operator /= (T a)
- {
- x /= a;
- y /= a;
- z /= a;
- w /= a;
- return *this;
- }
- template <class T>
- inline Vec4<T>
- Vec4<T>::operator / (const Vec4 &v) const
- {
- return Vec4 (x / v.x, y / v.y, z / v.z, w / v.w);
- }
- template <class T>
- inline Vec4<T>
- Vec4<T>::operator / (T a) const
- {
- return Vec4 (x / a, y / a, z / a, w / a);
- }
- template <class T>
- T
- Vec4<T>::lengthTiny () const
- {
- T absX = (x >= T (0))? x: -x;
- T absY = (y >= T (0))? y: -y;
- T absZ = (z >= T (0))? z: -z;
- T absW = (w >= T (0))? w: -w;
-
- T max = absX;
- if (max < absY)
- max = absY;
- if (max < absZ)
- max = absZ;
- if (max < absW)
- max = absW;
- if (max == T (0))
- return T (0);
- //
- // Do not replace the divisions by max with multiplications by 1/max.
- // Computing 1/max can overflow but the divisions below will always
- // produce results less than or equal to 1.
- //
- absX /= max;
- absY /= max;
- absZ /= max;
- absW /= max;
- return max *
- Math<T>::sqrt (absX * absX + absY * absY + absZ * absZ + absW * absW);
- }
- template <class T>
- inline T
- Vec4<T>::length () const
- {
- T length2 = dot (*this);
- if (length2 < T (2) * limits<T>::smallest())
- return lengthTiny();
- return Math<T>::sqrt (length2);
- }
- template <class T>
- inline T
- Vec4<T>::length2 () const
- {
- return dot (*this);
- }
- template <class T>
- const Vec4<T> &
- Vec4<T>::normalize ()
- {
- T l = length();
- if (l != T (0))
- {
- //
- // Do not replace the divisions by l with multiplications by 1/l.
- // Computing 1/l can overflow but the divisions below will always
- // produce results less than or equal to 1.
- //
- x /= l;
- y /= l;
- z /= l;
- w /= l;
- }
- return *this;
- }
- template <class T>
- const Vec4<T> &
- Vec4<T>::normalizeExc ()
- {
- T l = length();
- if (l == T (0))
- throw NullVecExc ("Cannot normalize null vector.");
- x /= l;
- y /= l;
- z /= l;
- w /= l;
- return *this;
- }
- template <class T>
- inline
- const Vec4<T> &
- Vec4<T>::normalizeNonNull ()
- {
- T l = length();
- x /= l;
- y /= l;
- z /= l;
- w /= l;
- return *this;
- }
- template <class T>
- Vec4<T>
- Vec4<T>::normalized () const
- {
- T l = length();
- if (l == T (0))
- return Vec4 (T (0));
- return Vec4 (x / l, y / l, z / l, w / l);
- }
- template <class T>
- Vec4<T>
- Vec4<T>::normalizedExc () const
- {
- T l = length();
- if (l == T (0))
- throw NullVecExc ("Cannot normalize null vector.");
- return Vec4 (x / l, y / l, z / l, w / l);
- }
- template <class T>
- inline
- Vec4<T>
- Vec4<T>::normalizedNonNull () const
- {
- T l = length();
- return Vec4 (x / l, y / l, z / l, w / l);
- }
- //-----------------------------
- // Stream output implementation
- //-----------------------------
- template <class T>
- std::ostream &
- operator << (std::ostream &s, const Vec2<T> &v)
- {
- return s << '(' << v.x << ' ' << v.y << ')';
- }
- template <class T>
- std::ostream &
- operator << (std::ostream &s, const Vec3<T> &v)
- {
- return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ')';
- }
- template <class T>
- std::ostream &
- operator << (std::ostream &s, const Vec4<T> &v)
- {
- return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ' ' << v.w << ')';
- }
- //-----------------------------------------
- // Implementation of reverse multiplication
- //-----------------------------------------
- template <class T>
- inline Vec2<T>
- operator * (T a, const Vec2<T> &v)
- {
- return Vec2<T> (a * v.x, a * v.y);
- }
- template <class T>
- inline Vec3<T>
- operator * (T a, const Vec3<T> &v)
- {
- return Vec3<T> (a * v.x, a * v.y, a * v.z);
- }
- template <class T>
- inline Vec4<T>
- operator * (T a, const Vec4<T> &v)
- {
- return Vec4<T> (a * v.x, a * v.y, a * v.z, a * v.w);
- }
- #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
- #pragma warning(pop)
- #endif
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHVEC_H
|