123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHROOTS_H
- #define INCLUDED_IMATHROOTS_H
- //---------------------------------------------------------------------
- //
- // Functions to solve linear, quadratic or cubic equations
- //
- //---------------------------------------------------------------------
- #include "ImathMath.h"
- #include "ImathNamespace.h"
- #include <complex>
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- //--------------------------------------------------------------------------
- // Find the real solutions of a linear, quadratic or cubic equation:
- //
- // function equation solved
- //
- // solveLinear (a, b, x) a * x + b == 0
- // solveQuadratic (a, b, c, x) a * x*x + b * x + c == 0
- // solveNormalizedCubic (r, s, t, x) x*x*x + r * x*x + s * x + t == 0
- // solveCubic (a, b, c, d, x) a * x*x*x + b * x*x + c * x + d == 0
- //
- // Return value:
- //
- // 3 three real solutions, stored in x[0], x[1] and x[2]
- // 2 two real solutions, stored in x[0] and x[1]
- // 1 one real solution, stored in x[1]
- // 0 no real solutions
- // -1 all real numbers are solutions
- //
- // Notes:
- //
- // * It is possible that an equation has real solutions, but that the
- // solutions (or some intermediate result) are not representable.
- // In this case, either some of the solutions returned are invalid
- // (nan or infinity), or, if floating-point exceptions have been
- // enabled with Iex::mathExcOn(), an Iex::MathExc exception is
- // thrown.
- //
- // * Cubic equations are solved using Cardano's Formula; even though
- // only real solutions are produced, some intermediate results are
- // complex (std::complex<T>).
- //
- //--------------------------------------------------------------------------
- template <class T> int solveLinear (T a, T b, T &x);
- template <class T> int solveQuadratic (T a, T b, T c, T x[2]);
- template <class T> int solveNormalizedCubic (T r, T s, T t, T x[3]);
- template <class T> int solveCubic (T a, T b, T c, T d, T x[3]);
- //---------------
- // Implementation
- //---------------
- template <class T>
- int
- solveLinear (T a, T b, T &x)
- {
- if (a != 0)
- {
- x = -b / a;
- return 1;
- }
- else if (b != 0)
- {
- return 0;
- }
- else
- {
- return -1;
- }
- }
- template <class T>
- int
- solveQuadratic (T a, T b, T c, T x[2])
- {
- if (a == 0)
- {
- return solveLinear (b, c, x[0]);
- }
- else
- {
- T D = b * b - 4 * a * c;
- if (D > 0)
- {
- T s = Math<T>::sqrt (D);
- T q = -(b + (b > 0 ? 1 : -1) * s) / T(2);
- x[0] = q / a;
- x[1] = c / q;
- return 2;
- }
- if (D == 0)
- {
- x[0] = -b / (2 * a);
- return 1;
- }
- else
- {
- return 0;
- }
- }
- }
- template <class T>
- int
- solveNormalizedCubic (T r, T s, T t, T x[3])
- {
- T p = (3 * s - r * r) / 3;
- T q = 2 * r * r * r / 27 - r * s / 3 + t;
- T p3 = p / 3;
- T q2 = q / 2;
- T D = p3 * p3 * p3 + q2 * q2;
- if (D == 0 && p3 == 0)
- {
- x[0] = -r / 3;
- x[1] = -r / 3;
- x[2] = -r / 3;
- return 1;
- }
- std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),
- T (1) / T (3));
- std::complex<T> v = -p / (T (3) * u);
- const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
- // for long double
- std::complex<T> y0 (u + v);
- std::complex<T> y1 (-(u + v) / T (2) +
- (u - v) / T (2) * std::complex<T> (0, sqrt3));
- std::complex<T> y2 (-(u + v) / T (2) -
- (u - v) / T (2) * std::complex<T> (0, sqrt3));
- if (D > 0)
- {
- x[0] = y0.real() - r / 3;
- return 1;
- }
- else if (D == 0)
- {
- x[0] = y0.real() - r / 3;
- x[1] = y1.real() - r / 3;
- return 2;
- }
- else
- {
- x[0] = y0.real() - r / 3;
- x[1] = y1.real() - r / 3;
- x[2] = y2.real() - r / 3;
- return 3;
- }
- }
- template <class T>
- int
- solveCubic (T a, T b, T c, T d, T x[3])
- {
- if (a == 0)
- {
- return solveQuadratic (b, c, d, x);
- }
- else
- {
- return solveNormalizedCubic (b / a, c / a, d / a, x);
- }
- }
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHROOTS_H
|