123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHMATRIXALGO_H
- #define INCLUDED_IMATHMATRIXALGO_H
- //-------------------------------------------------------------------------
- //
- // This file contains algorithms applied to or in conjunction with
- // transformation matrices (Imath::Matrix33 and Imath::Matrix44).
- // The assumption made is that these functions are called much less
- // often than the basic point functions or these functions require
- // more support classes.
- //
- // This file also defines a few predefined constant matrices.
- //
- //-------------------------------------------------------------------------
- #include "ImathExport.h"
- #include "ImathMatrix.h"
- #include "ImathQuat.h"
- #include "ImathEuler.h"
- #include "ImathExc.h"
- #include "ImathVec.h"
- #include "ImathLimits.h"
- #include "ImathNamespace.h"
- #include <math.h>
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- //------------------
- // Identity matrices
- //------------------
- IMATH_EXPORT_CONST M33f identity33f;
- IMATH_EXPORT_CONST M44f identity44f;
- IMATH_EXPORT_CONST M33d identity33d;
- IMATH_EXPORT_CONST M44d identity44d;
- //----------------------------------------------------------------------
- // Extract scale, shear, rotation, and translation values from a matrix:
- //
- // Notes:
- //
- // This implementation follows the technique described in the paper by
- // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
- // Matrix into Simple Transformations", p. 320.
- //
- // - Some of the functions below have an optional exc parameter
- // that determines the functions' behavior when the matrix'
- // scaling is very close to zero:
- //
- // If exc is true, the functions throw an Imath::ZeroScale exception.
- //
- // If exc is false:
- //
- // extractScaling (m, s) returns false, s is invalid
- // sansScaling (m) returns m
- // removeScaling (m) returns false, m is unchanged
- // sansScalingAndShear (m) returns m
- // removeScalingAndShear (m) returns false, m is unchanged
- // extractAndRemoveScalingAndShear (m, s, h)
- // returns false, m is unchanged,
- // (sh) are invalid
- // checkForZeroScaleInRow () returns false
- // extractSHRT (m, s, h, r, t) returns false, (shrt) are invalid
- //
- // - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX()
- // assume that the matrix does not include shear or non-uniform scaling,
- // but they do not examine the matrix to verify this assumption.
- // Matrices with shear or non-uniform scaling are likely to produce
- // meaningless results. Therefore, you should use the
- // removeScalingAndShear() routine, if necessary, prior to calling
- // extractEuler...() .
- //
- // - All functions assume that the matrix does not include perspective
- // transformation(s), but they do not examine the matrix to verify
- // this assumption. Matrices with perspective transformations are
- // likely to produce meaningless results.
- //
- //----------------------------------------------------------------------
- //
- // Declarations for 4x4 matrix.
- //
- template <class T> bool extractScaling
- (const Matrix44<T> &mat,
- Vec3<T> &scl,
- bool exc = true);
-
- template <class T> Matrix44<T> sansScaling (const Matrix44<T> &mat,
- bool exc = true);
- template <class T> bool removeScaling
- (Matrix44<T> &mat,
- bool exc = true);
- template <class T> bool extractScalingAndShear
- (const Matrix44<T> &mat,
- Vec3<T> &scl,
- Vec3<T> &shr,
- bool exc = true);
-
- template <class T> Matrix44<T> sansScalingAndShear
- (const Matrix44<T> &mat,
- bool exc = true);
- template <class T> void sansScalingAndShear
- (Matrix44<T> &result,
- const Matrix44<T> &mat,
- bool exc = true);
- template <class T> bool removeScalingAndShear
- (Matrix44<T> &mat,
- bool exc = true);
- template <class T> bool extractAndRemoveScalingAndShear
- (Matrix44<T> &mat,
- Vec3<T> &scl,
- Vec3<T> &shr,
- bool exc = true);
- template <class T> void extractEulerXYZ
- (const Matrix44<T> &mat,
- Vec3<T> &rot);
- template <class T> void extractEulerZYX
- (const Matrix44<T> &mat,
- Vec3<T> &rot);
- template <class T> Quat<T> extractQuat (const Matrix44<T> &mat);
- template <class T> bool extractSHRT
- (const Matrix44<T> &mat,
- Vec3<T> &s,
- Vec3<T> &h,
- Vec3<T> &r,
- Vec3<T> &t,
- bool exc /*= true*/,
- typename Euler<T>::Order rOrder);
- template <class T> bool extractSHRT
- (const Matrix44<T> &mat,
- Vec3<T> &s,
- Vec3<T> &h,
- Vec3<T> &r,
- Vec3<T> &t,
- bool exc = true);
- template <class T> bool extractSHRT
- (const Matrix44<T> &mat,
- Vec3<T> &s,
- Vec3<T> &h,
- Euler<T> &r,
- Vec3<T> &t,
- bool exc = true);
- //
- // Internal utility function.
- //
- template <class T> bool checkForZeroScaleInRow
- (const T &scl,
- const Vec3<T> &row,
- bool exc = true);
- template <class T> Matrix44<T> outerProduct
- ( const Vec4<T> &a,
- const Vec4<T> &b);
- //
- // Returns a matrix that rotates "fromDirection" vector to "toDirection"
- // vector.
- //
- template <class T> Matrix44<T> rotationMatrix (const Vec3<T> &fromDirection,
- const Vec3<T> &toDirection);
- //
- // Returns a matrix that rotates the "fromDir" vector
- // so that it points towards "toDir". You may also
- // specify that you want the up vector to be pointing
- // in a certain direction "upDir".
- //
- template <class T> Matrix44<T> rotationMatrixWithUpDir
- (const Vec3<T> &fromDir,
- const Vec3<T> &toDir,
- const Vec3<T> &upDir);
- //
- // Constructs a matrix that rotates the z-axis so that it
- // points towards "targetDir". You must also specify
- // that you want the up vector to be pointing in a
- // certain direction "upDir".
- //
- // Notes: The following degenerate cases are handled:
- // (a) when the directions given by "toDir" and "upDir"
- // are parallel or opposite;
- // (the direction vectors must have a non-zero cross product)
- // (b) when any of the given direction vectors have zero length
- //
- template <class T> void alignZAxisWithTargetDir
- (Matrix44<T> &result,
- Vec3<T> targetDir,
- Vec3<T> upDir);
- // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
- // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
- // Inputs are :
- // -the position of the frame
- // -the x axis direction of the frame
- // -a normal to the y axis of the frame
- // Return is the orthonormal frame
- template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
- const Vec3<T>& xDir,
- const Vec3<T>& normal);
- // Add a translate/rotate/scale offset to an input frame
- // and put it in another frame of reference
- // Inputs are :
- // - input frame
- // - translate offset
- // - rotate offset in degrees
- // - scale offset
- // - frame of reference
- // Output is the offsetted frame
- template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
- const Vec3<T>& tOffset,
- const Vec3<T>& rOffset,
- const Vec3<T>& sOffset,
- const Vec3<T>& ref);
- // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
- // Inputs are :
- // -keepRotateA : if true keep rotate from matrix A, use B otherwise
- // -keepScaleA : if true keep scale from matrix A, use B otherwise
- // -Matrix A
- // -Matrix B
- // Return Matrix A with tweaked rotation/scale
- template <class T> Matrix44<T> computeRSMatrix( bool keepRotateA,
- bool keepScaleA,
- const Matrix44<T>& A,
- const Matrix44<T>& B);
- //----------------------------------------------------------------------
- //
- // Declarations for 3x3 matrix.
- //
-
- template <class T> bool extractScaling
- (const Matrix33<T> &mat,
- Vec2<T> &scl,
- bool exc = true);
-
- template <class T> Matrix33<T> sansScaling (const Matrix33<T> &mat,
- bool exc = true);
- template <class T> bool removeScaling
- (Matrix33<T> &mat,
- bool exc = true);
- template <class T> bool extractScalingAndShear
- (const Matrix33<T> &mat,
- Vec2<T> &scl,
- T &h,
- bool exc = true);
-
- template <class T> Matrix33<T> sansScalingAndShear
- (const Matrix33<T> &mat,
- bool exc = true);
- template <class T> bool removeScalingAndShear
- (Matrix33<T> &mat,
- bool exc = true);
- template <class T> bool extractAndRemoveScalingAndShear
- (Matrix33<T> &mat,
- Vec2<T> &scl,
- T &shr,
- bool exc = true);
- template <class T> void extractEuler
- (const Matrix33<T> &mat,
- T &rot);
- template <class T> bool extractSHRT (const Matrix33<T> &mat,
- Vec2<T> &s,
- T &h,
- T &r,
- Vec2<T> &t,
- bool exc = true);
- template <class T> bool checkForZeroScaleInRow
- (const T &scl,
- const Vec2<T> &row,
- bool exc = true);
- template <class T> Matrix33<T> outerProduct
- ( const Vec3<T> &a,
- const Vec3<T> &b);
- //-----------------------------------------------------------------------------
- // Implementation for 4x4 Matrix
- //------------------------------
- template <class T>
- bool
- extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
- {
- Vec3<T> shr;
- Matrix44<T> M (mat);
- if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
- return false;
-
- return true;
- }
- template <class T>
- Matrix44<T>
- sansScaling (const Matrix44<T> &mat, bool exc)
- {
- Vec3<T> scl;
- Vec3<T> shr;
- Vec3<T> rot;
- Vec3<T> tran;
- if (! extractSHRT (mat, scl, shr, rot, tran, exc))
- return mat;
- Matrix44<T> M;
-
- M.translate (tran);
- M.rotate (rot);
- M.shear (shr);
- return M;
- }
- template <class T>
- bool
- removeScaling (Matrix44<T> &mat, bool exc)
- {
- Vec3<T> scl;
- Vec3<T> shr;
- Vec3<T> rot;
- Vec3<T> tran;
- if (! extractSHRT (mat, scl, shr, rot, tran, exc))
- return false;
- mat.makeIdentity ();
- mat.translate (tran);
- mat.rotate (rot);
- mat.shear (shr);
- return true;
- }
- template <class T>
- bool
- extractScalingAndShear (const Matrix44<T> &mat,
- Vec3<T> &scl, Vec3<T> &shr, bool exc)
- {
- Matrix44<T> M (mat);
- if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
- return false;
-
- return true;
- }
- template <class T>
- Matrix44<T>
- sansScalingAndShear (const Matrix44<T> &mat, bool exc)
- {
- Vec3<T> scl;
- Vec3<T> shr;
- Matrix44<T> M (mat);
- if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
- return mat;
-
- return M;
- }
- template <class T>
- void
- sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
- {
- Vec3<T> scl;
- Vec3<T> shr;
- if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
- result = mat;
- }
- template <class T>
- bool
- removeScalingAndShear (Matrix44<T> &mat, bool exc)
- {
- Vec3<T> scl;
- Vec3<T> shr;
- if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
- return false;
-
- return true;
- }
- template <class T>
- bool
- extractAndRemoveScalingAndShear (Matrix44<T> &mat,
- Vec3<T> &scl, Vec3<T> &shr, bool exc)
- {
- //
- // This implementation follows the technique described in the paper by
- // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
- // Matrix into Simple Transformations", p. 320.
- //
- Vec3<T> row[3];
- row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
- row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
- row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
-
- T maxVal = 0;
- for (int i=0; i < 3; i++)
- for (int j=0; j < 3; j++)
- if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
- maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);
- //
- // We normalize the 3x3 matrix here.
- // It was noticed that this can improve numerical stability significantly,
- // especially when many of the upper 3x3 matrix's coefficients are very
- // close to zero; we correct for this step at the end by multiplying the
- // scaling factors by maxVal at the end (shear and rotation are not
- // affected by the normalization).
- if (maxVal != 0)
- {
- for (int i=0; i < 3; i++)
- if (! checkForZeroScaleInRow (maxVal, row[i], exc))
- return false;
- else
- row[i] /= maxVal;
- }
- // Compute X scale factor.
- scl.x = row[0].length ();
- if (! checkForZeroScaleInRow (scl.x, row[0], exc))
- return false;
- // Normalize first row.
- row[0] /= scl.x;
- // An XY shear factor will shear the X coord. as the Y coord. changes.
- // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
- // extract the first 3 because we can effect the last 3 by shearing in
- // XY, XZ, YZ combined rotations and scales.
- //
- // shear matrix < 1, YX, ZX, 0,
- // XY, 1, ZY, 0,
- // XZ, YZ, 1, 0,
- // 0, 0, 0, 1 >
- // Compute XY shear factor and make 2nd row orthogonal to 1st.
- shr[0] = row[0].dot (row[1]);
- row[1] -= shr[0] * row[0];
- // Now, compute Y scale.
- scl.y = row[1].length ();
- if (! checkForZeroScaleInRow (scl.y, row[1], exc))
- return false;
- // Normalize 2nd row and correct the XY shear factor for Y scaling.
- row[1] /= scl.y;
- shr[0] /= scl.y;
- // Compute XZ and YZ shears, orthogonalize 3rd row.
- shr[1] = row[0].dot (row[2]);
- row[2] -= shr[1] * row[0];
- shr[2] = row[1].dot (row[2]);
- row[2] -= shr[2] * row[1];
- // Next, get Z scale.
- scl.z = row[2].length ();
- if (! checkForZeroScaleInRow (scl.z, row[2], exc))
- return false;
- // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
- row[2] /= scl.z;
- shr[1] /= scl.z;
- shr[2] /= scl.z;
- // At this point, the upper 3x3 matrix in mat is orthonormal.
- // Check for a coordinate system flip. If the determinant
- // is less than zero, then negate the matrix and the scaling factors.
- if (row[0].dot (row[1].cross (row[2])) < 0)
- for (int i=0; i < 3; i++)
- {
- scl[i] *= -1;
- row[i] *= -1;
- }
- // Copy over the orthonormal rows into the returned matrix.
- // The upper 3x3 matrix in mat is now a rotation matrix.
- for (int i=0; i < 3; i++)
- {
- mat[i][0] = row[i][0];
- mat[i][1] = row[i][1];
- mat[i][2] = row[i][2];
- }
- // Correct the scaling factors for the normalization step that we
- // performed above; shear and rotation are not affected by the
- // normalization.
- scl *= maxVal;
- return true;
- }
- template <class T>
- void
- extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
- {
- //
- // Normalize the local x, y and z axes to remove scaling.
- //
- Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
- Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
- Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
- i.normalize();
- j.normalize();
- k.normalize();
- Matrix44<T> M (i[0], i[1], i[2], 0,
- j[0], j[1], j[2], 0,
- k[0], k[1], k[2], 0,
- 0, 0, 0, 1);
- //
- // Extract the first angle, rot.x.
- //
- rot.x = Math<T>::atan2 (M[1][2], M[2][2]);
- //
- // Remove the rot.x rotation from M, so that the remaining
- // rotation, N, is only around two axes, and gimbal lock
- // cannot occur.
- //
- Matrix44<T> N;
- N.rotate (Vec3<T> (-rot.x, 0, 0));
- N = N * M;
- //
- // Extract the other two angles, rot.y and rot.z, from N.
- //
- T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
- rot.y = Math<T>::atan2 (-N[0][2], cy);
- rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
- }
- template <class T>
- void
- extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
- {
- //
- // Normalize the local x, y and z axes to remove scaling.
- //
- Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
- Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
- Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
- i.normalize();
- j.normalize();
- k.normalize();
- Matrix44<T> M (i[0], i[1], i[2], 0,
- j[0], j[1], j[2], 0,
- k[0], k[1], k[2], 0,
- 0, 0, 0, 1);
- //
- // Extract the first angle, rot.x.
- //
- rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);
- //
- // Remove the x rotation from M, so that the remaining
- // rotation, N, is only around two axes, and gimbal lock
- // cannot occur.
- //
- Matrix44<T> N;
- N.rotate (Vec3<T> (0, 0, -rot.x));
- N = N * M;
- //
- // Extract the other two angles, rot.y and rot.z, from N.
- //
- T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
- rot.y = -Math<T>::atan2 (-N[2][0], cy);
- rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
- }
- template <class T>
- Quat<T>
- extractQuat (const Matrix44<T> &mat)
- {
- Matrix44<T> rot;
- T tr, s;
- T q[4];
- int i, j, k;
- Quat<T> quat;
- int nxt[3] = {1, 2, 0};
- tr = mat[0][0] + mat[1][1] + mat[2][2];
- // check the diagonal
- if (tr > 0.0) {
- s = Math<T>::sqrt (tr + T(1.0));
- quat.r = s / T(2.0);
- s = T(0.5) / s;
- quat.v.x = (mat[1][2] - mat[2][1]) * s;
- quat.v.y = (mat[2][0] - mat[0][2]) * s;
- quat.v.z = (mat[0][1] - mat[1][0]) * s;
- }
- else {
- // diagonal is negative
- i = 0;
- if (mat[1][1] > mat[0][0])
- i=1;
- if (mat[2][2] > mat[i][i])
- i=2;
-
- j = nxt[i];
- k = nxt[j];
- s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
-
- q[i] = s * T(0.5);
- if (s != T(0.0))
- s = T(0.5) / s;
- q[3] = (mat[j][k] - mat[k][j]) * s;
- q[j] = (mat[i][j] + mat[j][i]) * s;
- q[k] = (mat[i][k] + mat[k][i]) * s;
- quat.v.x = q[0];
- quat.v.y = q[1];
- quat.v.z = q[2];
- quat.r = q[3];
- }
- return quat;
- }
- template <class T>
- bool
- extractSHRT (const Matrix44<T> &mat,
- Vec3<T> &s,
- Vec3<T> &h,
- Vec3<T> &r,
- Vec3<T> &t,
- bool exc /* = true */ ,
- typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
- {
- Matrix44<T> rot;
- rot = mat;
- if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
- return false;
- extractEulerXYZ (rot, r);
- t.x = mat[3][0];
- t.y = mat[3][1];
- t.z = mat[3][2];
- if (rOrder != Euler<T>::XYZ)
- {
- IMATH_INTERNAL_NAMESPACE::Euler<T> eXYZ (r, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
- IMATH_INTERNAL_NAMESPACE::Euler<T> e (eXYZ, rOrder);
- r = e.toXYZVector ();
- }
- return true;
- }
- template <class T>
- bool
- extractSHRT (const Matrix44<T> &mat,
- Vec3<T> &s,
- Vec3<T> &h,
- Vec3<T> &r,
- Vec3<T> &t,
- bool exc)
- {
- return extractSHRT(mat, s, h, r, t, exc, IMATH_INTERNAL_NAMESPACE::Euler<T>::XYZ);
- }
- template <class T>
- bool
- extractSHRT (const Matrix44<T> &mat,
- Vec3<T> &s,
- Vec3<T> &h,
- Euler<T> &r,
- Vec3<T> &t,
- bool exc /* = true */)
- {
- return extractSHRT (mat, s, h, r, t, exc, r.order ());
- }
- template <class T>
- bool
- checkForZeroScaleInRow (const T& scl,
- const Vec3<T> &row,
- bool exc /* = true */ )
- {
- for (int i = 0; i < 3; i++)
- {
- if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
- {
- if (exc)
- throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc ("Cannot remove zero scaling "
- "from matrix.");
- else
- return false;
- }
- }
- return true;
- }
- template <class T>
- Matrix44<T>
- outerProduct (const Vec4<T> &a, const Vec4<T> &b )
- {
- return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
- a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
- a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
- a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
- }
- template <class T>
- Matrix44<T>
- rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
- {
- Quat<T> q;
- q.setRotation(from, to);
- return q.toMatrix44();
- }
- template <class T>
- Matrix44<T>
- rotationMatrixWithUpDir (const Vec3<T> &fromDir,
- const Vec3<T> &toDir,
- const Vec3<T> &upDir)
- {
- //
- // The goal is to obtain a rotation matrix that takes
- // "fromDir" to "toDir". We do this in two steps and
- // compose the resulting rotation matrices;
- // (a) rotate "fromDir" into the z-axis
- // (b) rotate the z-axis into "toDir"
- //
- // The from direction must be non-zero; but we allow zero to and up dirs.
- if (fromDir.length () == 0)
- return Matrix44<T> ();
- else
- {
- Matrix44<T> zAxis2FromDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
- alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
- Matrix44<T> fromDir2zAxis = zAxis2FromDir.transposed ();
-
- Matrix44<T> zAxis2ToDir( IMATH_INTERNAL_NAMESPACE::UNINITIALIZED );
- alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);
- return fromDir2zAxis * zAxis2ToDir;
- }
- }
- template <class T>
- void
- alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
- {
- //
- // Ensure that the target direction is non-zero.
- //
- if ( targetDir.length () == 0 )
- targetDir = Vec3<T> (0, 0, 1);
- //
- // Ensure that the up direction is non-zero.
- //
- if ( upDir.length () == 0 )
- upDir = Vec3<T> (0, 1, 0);
- //
- // Check for degeneracies. If the upDir and targetDir are parallel
- // or opposite, then compute a new, arbitrary up direction that is
- // not parallel or opposite to the targetDir.
- //
- if (upDir.cross (targetDir).length () == 0)
- {
- upDir = targetDir.cross (Vec3<T> (1, 0, 0));
- if (upDir.length() == 0)
- upDir = targetDir.cross(Vec3<T> (0, 0, 1));
- }
- //
- // Compute the x-, y-, and z-axis vectors of the new coordinate system.
- //
- Vec3<T> targetPerpDir = upDir.cross (targetDir);
- Vec3<T> targetUpDir = targetDir.cross (targetPerpDir);
-
- //
- // Rotate the x-axis into targetPerpDir (row 0),
- // rotate the y-axis into targetUpDir (row 1),
- // rotate the z-axis into targetDir (row 2).
- //
-
- Vec3<T> row[3];
- row[0] = targetPerpDir.normalized ();
- row[1] = targetUpDir .normalized ();
- row[2] = targetDir .normalized ();
-
- result.x[0][0] = row[0][0];
- result.x[0][1] = row[0][1];
- result.x[0][2] = row[0][2];
- result.x[0][3] = (T)0;
-
- result.x[1][0] = row[1][0];
- result.x[1][1] = row[1][1];
- result.x[1][2] = row[1][2];
- result.x[1][3] = (T)0;
-
- result.x[2][0] = row[2][0];
- result.x[2][1] = row[2][1];
- result.x[2][2] = row[2][2];
- result.x[2][3] = (T)0;
-
- result.x[3][0] = (T)0;
- result.x[3][1] = (T)0;
- result.x[3][2] = (T)0;
- result.x[3][3] = (T)1;
- }
- // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
- // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
- // Inputs are :
- // -the position of the frame
- // -the x axis direction of the frame
- // -a normal to the y axis of the frame
- // Return is the orthonormal frame
- template <class T>
- Matrix44<T>
- computeLocalFrame( const Vec3<T>& p,
- const Vec3<T>& xDir,
- const Vec3<T>& normal)
- {
- Vec3<T> _xDir(xDir);
- Vec3<T> x = _xDir.normalize();
- Vec3<T> y = (normal % x).normalize();
- Vec3<T> z = (x % y).normalize();
- Matrix44<T> L;
- L[0][0] = x[0];
- L[0][1] = x[1];
- L[0][2] = x[2];
- L[0][3] = 0.0;
- L[1][0] = y[0];
- L[1][1] = y[1];
- L[1][2] = y[2];
- L[1][3] = 0.0;
- L[2][0] = z[0];
- L[2][1] = z[1];
- L[2][2] = z[2];
- L[2][3] = 0.0;
- L[3][0] = p[0];
- L[3][1] = p[1];
- L[3][2] = p[2];
- L[3][3] = 1.0;
-
- return L;
- }
- // Add a translate/rotate/scale offset to an input frame
- // and put it in another frame of reference
- // Inputs are :
- // - input frame
- // - translate offset
- // - rotate offset in degrees
- // - scale offset
- // - frame of reference
- // Output is the offsetted frame
- template <class T>
- Matrix44<T>
- addOffset( const Matrix44<T>& inMat,
- const Vec3<T>& tOffset,
- const Vec3<T>& rOffset,
- const Vec3<T>& sOffset,
- const Matrix44<T>& ref)
- {
- Matrix44<T> O;
- Vec3<T> _rOffset(rOffset);
- _rOffset *= M_PI / 180.0;
- O.rotate (_rOffset);
- O[3][0] = tOffset[0];
- O[3][1] = tOffset[1];
- O[3][2] = tOffset[2];
- Matrix44<T> S;
- S.scale (sOffset);
- Matrix44<T> X = S * O * inMat * ref;
- return X;
- }
- // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
- // Inputs are :
- // -keepRotateA : if true keep rotate from matrix A, use B otherwise
- // -keepScaleA : if true keep scale from matrix A, use B otherwise
- // -Matrix A
- // -Matrix B
- // Return Matrix A with tweaked rotation/scale
- template <class T>
- Matrix44<T>
- computeRSMatrix( bool keepRotateA,
- bool keepScaleA,
- const Matrix44<T>& A,
- const Matrix44<T>& B)
- {
- Vec3<T> as, ah, ar, at;
- extractSHRT (A, as, ah, ar, at);
-
- Vec3<T> bs, bh, br, bt;
- extractSHRT (B, bs, bh, br, bt);
- if (!keepRotateA)
- ar = br;
- if (!keepScaleA)
- as = bs;
- Matrix44<T> mat;
- mat.makeIdentity();
- mat.translate (at);
- mat.rotate (ar);
- mat.scale (as);
-
- return mat;
- }
- //-----------------------------------------------------------------------------
- // Implementation for 3x3 Matrix
- //------------------------------
- template <class T>
- bool
- extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
- {
- T shr;
- Matrix33<T> M (mat);
- if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
- return false;
- return true;
- }
- template <class T>
- Matrix33<T>
- sansScaling (const Matrix33<T> &mat, bool exc)
- {
- Vec2<T> scl;
- T shr;
- T rot;
- Vec2<T> tran;
- if (! extractSHRT (mat, scl, shr, rot, tran, exc))
- return mat;
- Matrix33<T> M;
-
- M.translate (tran);
- M.rotate (rot);
- M.shear (shr);
- return M;
- }
- template <class T>
- bool
- removeScaling (Matrix33<T> &mat, bool exc)
- {
- Vec2<T> scl;
- T shr;
- T rot;
- Vec2<T> tran;
- if (! extractSHRT (mat, scl, shr, rot, tran, exc))
- return false;
- mat.makeIdentity ();
- mat.translate (tran);
- mat.rotate (rot);
- mat.shear (shr);
- return true;
- }
- template <class T>
- bool
- extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
- {
- Matrix33<T> M (mat);
- if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
- return false;
- return true;
- }
- template <class T>
- Matrix33<T>
- sansScalingAndShear (const Matrix33<T> &mat, bool exc)
- {
- Vec2<T> scl;
- T shr;
- Matrix33<T> M (mat);
- if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
- return mat;
-
- return M;
- }
- template <class T>
- bool
- removeScalingAndShear (Matrix33<T> &mat, bool exc)
- {
- Vec2<T> scl;
- T shr;
- if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
- return false;
-
- return true;
- }
- template <class T>
- bool
- extractAndRemoveScalingAndShear (Matrix33<T> &mat,
- Vec2<T> &scl, T &shr, bool exc)
- {
- Vec2<T> row[2];
- row[0] = Vec2<T> (mat[0][0], mat[0][1]);
- row[1] = Vec2<T> (mat[1][0], mat[1][1]);
-
- T maxVal = 0;
- for (int i=0; i < 2; i++)
- for (int j=0; j < 2; j++)
- if (IMATH_INTERNAL_NAMESPACE::abs (row[i][j]) > maxVal)
- maxVal = IMATH_INTERNAL_NAMESPACE::abs (row[i][j]);
- //
- // We normalize the 2x2 matrix here.
- // It was noticed that this can improve numerical stability significantly,
- // especially when many of the upper 2x2 matrix's coefficients are very
- // close to zero; we correct for this step at the end by multiplying the
- // scaling factors by maxVal at the end (shear and rotation are not
- // affected by the normalization).
- if (maxVal != 0)
- {
- for (int i=0; i < 2; i++)
- if (! checkForZeroScaleInRow (maxVal, row[i], exc))
- return false;
- else
- row[i] /= maxVal;
- }
- // Compute X scale factor.
- scl.x = row[0].length ();
- if (! checkForZeroScaleInRow (scl.x, row[0], exc))
- return false;
- // Normalize first row.
- row[0] /= scl.x;
- // An XY shear factor will shear the X coord. as the Y coord. changes.
- // There are 2 combinations (XY, YX), although we only extract the XY
- // shear factor because we can effect the an YX shear factor by
- // shearing in XY combined with rotations and scales.
- //
- // shear matrix < 1, YX, 0,
- // XY, 1, 0,
- // 0, 0, 1 >
- // Compute XY shear factor and make 2nd row orthogonal to 1st.
- shr = row[0].dot (row[1]);
- row[1] -= shr * row[0];
- // Now, compute Y scale.
- scl.y = row[1].length ();
- if (! checkForZeroScaleInRow (scl.y, row[1], exc))
- return false;
- // Normalize 2nd row and correct the XY shear factor for Y scaling.
- row[1] /= scl.y;
- shr /= scl.y;
- // At this point, the upper 2x2 matrix in mat is orthonormal.
- // Check for a coordinate system flip. If the determinant
- // is -1, then flip the rotation matrix and adjust the scale(Y)
- // and shear(XY) factors to compensate.
- if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
- {
- row[1][0] *= -1;
- row[1][1] *= -1;
- scl[1] *= -1;
- shr *= -1;
- }
- // Copy over the orthonormal rows into the returned matrix.
- // The upper 2x2 matrix in mat is now a rotation matrix.
- for (int i=0; i < 2; i++)
- {
- mat[i][0] = row[i][0];
- mat[i][1] = row[i][1];
- }
- scl *= maxVal;
- return true;
- }
- template <class T>
- void
- extractEuler (const Matrix33<T> &mat, T &rot)
- {
- //
- // Normalize the local x and y axes to remove scaling.
- //
- Vec2<T> i (mat[0][0], mat[0][1]);
- Vec2<T> j (mat[1][0], mat[1][1]);
- i.normalize();
- j.normalize();
- //
- // Extract the angle, rot.
- //
- rot = - Math<T>::atan2 (j[0], i[0]);
- }
- template <class T>
- bool
- extractSHRT (const Matrix33<T> &mat,
- Vec2<T> &s,
- T &h,
- T &r,
- Vec2<T> &t,
- bool exc)
- {
- Matrix33<T> rot;
- rot = mat;
- if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
- return false;
- extractEuler (rot, r);
- t.x = mat[2][0];
- t.y = mat[2][1];
- return true;
- }
- template <class T>
- bool
- checkForZeroScaleInRow (const T& scl,
- const Vec2<T> &row,
- bool exc /* = true */ )
- {
- for (int i = 0; i < 2; i++)
- {
- if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
- {
- if (exc)
- throw IMATH_INTERNAL_NAMESPACE::ZeroScaleExc (
- "Cannot remove zero scaling from matrix.");
- else
- return false;
- }
- }
- return true;
- }
- template <class T>
- Matrix33<T>
- outerProduct (const Vec3<T> &a, const Vec3<T> &b )
- {
- return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
- a.y*b.x, a.y*b.y, a.y*b.z,
- a.z*b.x, a.z*b.y, a.z*b.z );
- }
- // Computes the translation and rotation that brings the 'from' points
- // as close as possible to the 'to' points under the Frobenius norm.
- // To be more specific, let x be the matrix of 'from' points and y be
- // the matrix of 'to' points, we want to find the matrix A of the form
- // [ R t ]
- // [ 0 1 ]
- // that minimizes
- // || (A*x - y)^T * W * (A*x - y) ||_F
- // If doScaling is true, then a uniform scale is allowed also.
- template <typename T>
- IMATH_INTERNAL_NAMESPACE::M44d
- procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A, // From these
- const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B, // To these
- const T* weights,
- const size_t numPoints,
- const bool doScaling = false);
- // Unweighted:
- template <typename T>
- IMATH_INTERNAL_NAMESPACE::M44d
- procrustesRotationAndTranslation (const IMATH_INTERNAL_NAMESPACE::Vec3<T>* A,
- const IMATH_INTERNAL_NAMESPACE::Vec3<T>* B,
- const size_t numPoints,
- const bool doScaling = false);
- // Compute the SVD of a 3x3 matrix using Jacobi transformations. This method
- // should be quite accurate (competitive with LAPACK) even for poorly
- // conditioned matrices, and because it has been written specifically for the
- // 3x3/4x4 case it is much faster than calling out to LAPACK.
- //
- // The SVD of a 3x3/4x4 matrix A is defined as follows:
- // A = U * S * V^T
- // where S is the diagonal matrix of singular values and both U and V are
- // orthonormal. By convention, the entries S are all positive and sorted from
- // the largest to the smallest. However, some uses of this function may
- // require that the matrix U*V^T have positive determinant; in this case, we
- // may make the smallest singular value negative to ensure that this is
- // satisfied.
- //
- // Currently only available for single- and double-precision matrices.
- template <typename T>
- void
- jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& U,
- IMATH_INTERNAL_NAMESPACE::Vec3<T>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& V,
- const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
- const bool forcePositiveDeterminant = false);
- template <typename T>
- void
- jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& U,
- IMATH_INTERNAL_NAMESPACE::Vec4<T>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& V,
- const T tol = IMATH_INTERNAL_NAMESPACE::limits<T>::epsilon(),
- const bool forcePositiveDeterminant = false);
- // Compute the eigenvalues (S) and the eigenvectors (V) of
- // a real symmetric matrix using Jacobi transformation.
- //
- // Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
- // A = V * S * V^T
- // where V is orthonormal and S is the diagonal matrix of eigenvalues.
- // Input matrix A must be symmetric. A is also modified during
- // the computation so that upper diagonal entries of A become zero.
- //
- template <typename T>
- void
- jacobiEigenSolver (Matrix33<T>& A,
- Vec3<T>& S,
- Matrix33<T>& V,
- const T tol);
- template <typename T>
- inline
- void
- jacobiEigenSolver (Matrix33<T>& A,
- Vec3<T>& S,
- Matrix33<T>& V)
- {
- jacobiEigenSolver(A,S,V,limits<T>::epsilon());
- }
- template <typename T>
- void
- jacobiEigenSolver (Matrix44<T>& A,
- Vec4<T>& S,
- Matrix44<T>& V,
- const T tol);
- template <typename T>
- inline
- void
- jacobiEigenSolver (Matrix44<T>& A,
- Vec4<T>& S,
- Matrix44<T>& V)
- {
- jacobiEigenSolver(A,S,V,limits<T>::epsilon());
- }
- // Compute a eigenvector corresponding to the abs max/min eigenvalue
- // of a real symmetric matrix using Jacobi transformation.
- template <typename TM, typename TV>
- void
- maxEigenVector (TM& A, TV& S);
- template <typename TM, typename TV>
- void
- minEigenVector (TM& A, TV& S);
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHMATRIXALGO_H
|