1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- //----------------------------------------------------------------------------
- //
- // Implementation of non-template items declared in ImathMatrixAlgo.h
- //
- //----------------------------------------------------------------------------
- #include "ImathMatrixAlgo.h"
- #include <cmath>
- #include <algorithm>
- #if defined(OPENEXR_DLL)
- #define EXPORT_CONST __declspec(dllexport)
- #else
- #define EXPORT_CONST const
- #endif
- IMATH_INTERNAL_NAMESPACE_SOURCE_ENTER
- EXPORT_CONST M33f identity33f ( 1, 0, 0,
- 0, 1, 0,
- 0, 0, 1);
- EXPORT_CONST M33d identity33d ( 1, 0, 0,
- 0, 1, 0,
- 0, 0, 1);
- EXPORT_CONST M44f identity44f ( 1, 0, 0, 0,
- 0, 1, 0, 0,
- 0, 0, 1, 0,
- 0, 0, 0, 1);
- EXPORT_CONST M44d identity44d ( 1, 0, 0, 0,
- 0, 1, 0, 0,
- 0, 0, 1, 0,
- 0, 0, 0, 1);
- namespace
- {
- class KahanSum
- {
- public:
- KahanSum() : _total(0), _correction(0) {}
- void
- operator+= (const double val)
- {
- const double y = val - _correction;
- const double t = _total + y;
- _correction = (t - _total) - y;
- _total = t;
- }
- double get() const
- {
- return _total;
- }
- private:
- double _total;
- double _correction;
- };
- }
- template <typename T>
- M44d
- procrustesRotationAndTranslation (const Vec3<T>* A, const Vec3<T>* B, const T* weights, const size_t numPoints, const bool doScale)
- {
- if (numPoints == 0)
- return M44d();
- // Always do the accumulation in double precision:
- V3d Acenter (0.0);
- V3d Bcenter (0.0);
- double weightsSum = 0.0;
- if (weights == 0)
- {
- for (int i = 0; i < numPoints; ++i)
- {
- Acenter += (V3d) A[i];
- Bcenter += (V3d) B[i];
- }
- weightsSum = (double) numPoints;
- }
- else
- {
- for (int i = 0; i < numPoints; ++i)
- {
- const double w = weights[i];
- weightsSum += w;
- Acenter += w * (V3d) A[i];
- Bcenter += w * (V3d) B[i];
- }
- }
- if (weightsSum == 0)
- return M44d();
- Acenter /= weightsSum;
- Bcenter /= weightsSum;
- //
- // Find Q such that |Q*A - B| (actually A-Acenter and B-Bcenter, weighted)
- // is minimized in the least squares sense.
- // From Golub/Van Loan, p.601
- //
- // A,B are 3xn
- // Let C = B A^T (where A is 3xn and B^T is nx3, so C is 3x3)
- // Compute the SVD: C = U D V^T (U,V rotations, D diagonal).
- // Throw away the D part, and return Q = U V^T
- M33d C (0.0);
- if (weights == 0)
- {
- for (int i = 0; i < numPoints; ++i)
- C += outerProduct ((V3d) B[i] - Bcenter, (V3d) A[i] - Acenter);
- }
- else
- {
- for (int i = 0; i < numPoints; ++i)
- {
- const double w = weights[i];
- C += outerProduct (w * ((V3d) B[i] - Bcenter), (V3d) A[i] - Acenter);
- }
- }
- M33d U, V;
- V3d S;
- jacobiSVD (C, U, S, V, IMATH_INTERNAL_NAMESPACE::limits<double>::epsilon(), true);
- // We want Q.transposed() here since we are going to be using it in the
- // Imath style (multiplying vectors on the right, v' = v*A^T):
- const M33d Qt = V * U.transposed();
- double s = 1.0;
- if (doScale && numPoints > 1)
- {
- // Finding a uniform scale: let us assume the Q is completely fixed
- // at this point (solving for both simultaneously seems much harder).
- // We are trying to compute (again, per Golub and van Loan)
- // min || s*A*Q - B ||_F
- // Notice that we've jammed a uniform scale in front of the Q.
- // Now, the Frobenius norm (the least squares norm over matrices)
- // has the neat property that it is equivalent to minimizing the trace
- // of M^T*M (see your friendly neighborhood linear algebra text for a
- // derivation). Thus, we can expand this out as
- // min tr (s*A*Q - B)^T*(s*A*Q - B)
- // = min tr(Q^T*A^T*s*s*A*Q) + tr(B^T*B) - 2*tr(Q^T*A^T*s*B) by linearity of the trace
- // = min s^2 tr(A^T*A) + tr(B^T*B) - 2*s*tr(Q^T*A^T*B) using the fact that the trace is invariant
- // under similarity transforms Q*M*Q^T
- // If we differentiate w.r.t. s and set this to 0, we get
- // 0 = 2*s*tr(A^T*A) - 2*tr(Q^T*A^T*B)
- // so
- // 2*s*tr(A^T*A) = 2*s*tr(Q^T*A^T*B)
- // s = tr(Q^T*A^T*B) / tr(A^T*A)
- KahanSum traceATA;
- if (weights == 0)
- {
- for (int i = 0; i < numPoints; ++i)
- traceATA += ((V3d) A[i] - Acenter).length2();
- }
- else
- {
- for (int i = 0; i < numPoints; ++i)
- traceATA += ((double) weights[i]) * ((V3d) A[i] - Acenter).length2();
- }
- KahanSum traceBATQ;
- for (int i = 0; i < 3; ++i)
- for (int j = 0; j < 3; ++j)
- traceBATQ += Qt[j][i] * C[i][j];
- s = traceBATQ.get() / traceATA.get();
- }
- // Q is the rotation part of what we want to return.
- // The entire transform is:
- // (translate origin to Bcenter) * Q * (translate Acenter to origin)
- // last first
- // The effect of this on a point is:
- // (translate origin to Bcenter) * Q * (translate Acenter to origin) * point
- // = (translate origin to Bcenter) * Q * (-Acenter + point)
- // = (translate origin to Bcenter) * (-Q*Acenter + Q*point)
- // = (translate origin to Bcenter) * (translate Q*Acenter to origin) * Q*point
- // = (translate Q*Acenter to Bcenter) * Q*point
- // So what we want to return is:
- // (translate Q*Acenter to Bcenter) * Q
- //
- // In block form, this is:
- // [ 1 0 0 | ] [ 0 ] [ 1 0 0 | ] [ 1 0 0 | ] [ | ] [ ]
- // [ 0 1 0 tb ] [ s*Q 0 ] [ 0 1 0 -ta ] = [ 0 1 0 tb ] [ s*Q -s*Q*ta ] = [ Q tb-s*Q*ta ]
- // [ 0 0 1 | ] [ 0 ] [ 0 0 1 | ] [ 0 0 1 | ] [ | ] [ ]
- // [ 0 0 0 1 ] [ 0 0 0 1 ] [ 0 0 0 1 ] [ 0 0 0 1 ] [ 0 0 0 1 ] [ 0 0 0 1 ]
- // (ofc the whole thing is transposed for Imath).
- const V3d translate = Bcenter - s*Acenter*Qt;
- return M44d (s*Qt.x[0][0], s*Qt.x[0][1], s*Qt.x[0][2], T(0),
- s*Qt.x[1][0], s*Qt.x[1][1], s*Qt.x[1][2], T(0),
- s*Qt.x[2][0], s*Qt.x[2][1], s*Qt.x[2][2], T(0),
- translate.x, translate.y, translate.z, T(1));
- } // procrustesRotationAndTranslation
- template <typename T>
- M44d
- procrustesRotationAndTranslation (const Vec3<T>* A, const Vec3<T>* B, const size_t numPoints, const bool doScale)
- {
- return procrustesRotationAndTranslation (A, B, (const T*) 0, numPoints, doScale);
- } // procrustesRotationAndTranslation
- template IMATH_EXPORT M44d procrustesRotationAndTranslation (const V3d* from, const V3d* to, const size_t numPoints, const bool doScale);
- template IMATH_EXPORT M44d procrustesRotationAndTranslation (const V3f* from, const V3f* to, const size_t numPoints, const bool doScale);
- template IMATH_EXPORT M44d procrustesRotationAndTranslation (const V3d* from, const V3d* to, const double* weights, const size_t numPoints, const bool doScale);
- template IMATH_EXPORT M44d procrustesRotationAndTranslation (const V3f* from, const V3f* to, const float* weights, const size_t numPoints, const bool doScale);
- namespace
- {
- // Applies the 2x2 Jacobi rotation
- // [ c s 0 ] [ 1 0 0 ] [ c 0 s ]
- // [ -s c 0 ] or [ 0 c s ] or [ 0 1 0 ]
- // [ 0 0 1 ] [ 0 -s c ] [ -s 0 c ]
- // from the right; that is, computes
- // J * A
- // for the Jacobi rotation J and the matrix A. This is efficient because we
- // only need to touch exactly the 2 columns that are affected, so we never
- // need to explicitly construct the J matrix.
- template <typename T, int j, int k>
- void
- jacobiRotateRight (IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A,
- const T c,
- const T s)
- {
- for (int i = 0; i < 3; ++i)
- {
- const T tau1 = A[i][j];
- const T tau2 = A[i][k];
- A[i][j] = c * tau1 - s * tau2;
- A[i][k] = s * tau1 + c * tau2;
- }
- }
- template <typename T>
- void
- jacobiRotateRight (IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A,
- const int j,
- const int k,
- const T c,
- const T s)
- {
- for (int i = 0; i < 4; ++i)
- {
- const T tau1 = A[i][j];
- const T tau2 = A[i][k];
- A[i][j] = c * tau1 - s * tau2;
- A[i][k] = s * tau1 + c * tau2;
- }
- }
- // This routine solves the 2x2 SVD:
- // [ c1 s1 ] [ w x ] [ c2 s2 ] [ d1 0 ]
- // [ ] [ ] [ ] = [ ]
- // [ -s1 c1 ] [ y z ] [ -s2 c2 ] [ 0 d2 ]
- // where
- // [ w x ]
- // A = [ ]
- // [ y z ]
- // is the subset of A consisting of the [j,k] entries, A([j k], [j k]) in
- // Matlab parlance. The method is the 'USVD' algorithm described in the
- // following paper:
- // 'Computation of the Singular Value Decomposition using Mesh-Connected Processors'
- // by Richard P. Brent, Franklin T. Luk, and Charles Van Loan
- // It breaks the computation into two steps: the first symmetrizes the matrix,
- // and the second diagonalizes the symmetric matrix.
- template <typename T, int j, int k, int l>
- bool
- twoSidedJacobiRotation (IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& U,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& V,
- const T tol)
- {
- // Load everything into local variables to make things easier on the
- // optimizer:
- const T w = A[j][j];
- const T x = A[j][k];
- const T y = A[k][j];
- const T z = A[k][k];
- // We will keep track of whether we're actually performing any rotations,
- // since if the matrix is already diagonal we'll end up with the identity
- // as our Jacobi rotation and we can short-circuit.
- bool changed = false;
- // The first step is to symmetrize the 2x2 matrix,
- // [ c s ]^T [ w x ] = [ p q ]
- // [ -s c ] [ y z ] [ q r ]
- T mu_1 = w + z;
- T mu_2 = x - y;
- T c, s;
- if (std::abs(mu_2) <= tol*std::abs(mu_1)) // Already symmetric (to tolerance)
- { // Note that the <= is important here
- c = T(1); // because we want to bypass the computation
- s = T(0); // of rho if mu_1 = mu_2 = 0.
- const T p = w;
- const T r = z;
- mu_1 = r - p;
- mu_2 = x + y;
- }
- else
- {
- const T rho = mu_1 / mu_2;
- s = T(1) / std::sqrt (T(1) + rho*rho); // TODO is there a native inverse square root function?
- if (rho < 0)
- s = -s;
- c = s * rho;
- mu_1 = s * (x + y) + c * (z - w); // = r - p
- mu_2 = T(2) * (c * x - s * z); // = 2*q
- changed = true;
- }
- // The second stage diagonalizes,
- // [ c2 s2 ]^T [ p q ] [ c2 s2 ] = [ d1 0 ]
- // [ -s2 c2 ] [ q r ] [ -s2 c2 ] [ 0 d2 ]
- T c_2, s_2;
- if (std::abs(mu_2) <= tol*std::abs(mu_1))
- {
- c_2 = T(1);
- s_2 = T(0);
- }
- else
- {
- const T rho_2 = mu_1 / mu_2;
- T t_2 = T(1) / (std::abs(rho_2) + std::sqrt(1 + rho_2*rho_2));
- if (rho_2 < 0)
- t_2 = -t_2;
- c_2 = T(1) / std::sqrt (T(1) + t_2*t_2);
- s_2 = c_2 * t_2;
- changed = true;
- }
- const T c_1 = c_2 * c - s_2 * s;
- const T s_1 = s_2 * c + c_2 * s;
- if (!changed)
- {
- // We've decided that the off-diagonal entries are already small
- // enough, so we'll set them to zero. This actually appears to result
- // in smaller errors than leaving them be, possibly because it prevents
- // us from trying to do extra rotations later that we don't need.
- A[k][j] = 0;
- A[j][k] = 0;
- return false;
- }
- const T d_1 = c_1*(w*c_2 - x*s_2) - s_1*(y*c_2 - z*s_2);
- const T d_2 = s_1*(w*s_2 + x*c_2) + c_1*(y*s_2 + z*c_2);
- // For the entries we just zeroed out, we'll just set them to 0, since
- // they should be 0 up to machine precision.
- A[j][j] = d_1;
- A[k][k] = d_2;
- A[k][j] = 0;
- A[j][k] = 0;
- // Rotate the entries that _weren't_ involved in the 2x2 SVD:
- {
- // Rotate on the left by
- // [ c1 s1 0 ]^T [ c1 0 s1 ]^T [ 1 0 0 ]^T
- // [ -s1 c1 0 ] or [ 0 1 0 ] or [ 0 c1 s1 ]
- // [ 0 0 1 ] [ -s1 0 c1 ] [ 0 -s1 c1 ]
- // This has the effect of adding the (weighted) ith and jth _rows_ to
- // each other.
- const T tau1 = A[j][l];
- const T tau2 = A[k][l];
- A[j][l] = c_1 * tau1 - s_1 * tau2;
- A[k][l] = s_1 * tau1 + c_1 * tau2;
- }
- {
- // Rotate on the right by
- // [ c2 s2 0 ] [ c2 0 s2 ] [ 1 0 0 ]
- // [ -s2 c2 0 ] or [ 0 1 0 ] or [ 0 c2 s2 ]
- // [ 0 0 1 ] [ -s2 0 c2 ] [ 0 -s2 c2 ]
- // This has the effect of adding the (weighted) ith and jth _columns_ to
- // each other.
- const T tau1 = A[l][j];
- const T tau2 = A[l][k];
- A[l][j] = c_2 * tau1 - s_2 * tau2;
- A[l][k] = s_2 * tau1 + c_2 * tau2;
- }
- // Now apply the rotations to U and V:
- // Remember that we have
- // R1^T * A * R2 = D
- // This is in the 2x2 case, but after doing a bunch of these
- // we will get something like this for the 3x3 case:
- // ... R1b^T * R1a^T * A * R2a * R2b * ... = D
- // ----------------- ---------------
- // = U^T = V
- // So,
- // U = R1a * R1b * ...
- // V = R2a * R2b * ...
- jacobiRotateRight<T, j, k> (U, c_1, s_1);
- jacobiRotateRight<T, j, k> (V, c_2, s_2);
- return true;
- }
- template <typename T>
- bool
- twoSidedJacobiRotation (IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A,
- int j,
- int k,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& U,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& V,
- const T tol)
- {
- // Load everything into local variables to make things easier on the
- // optimizer:
- const T w = A[j][j];
- const T x = A[j][k];
- const T y = A[k][j];
- const T z = A[k][k];
- // We will keep track of whether we're actually performing any rotations,
- // since if the matrix is already diagonal we'll end up with the identity
- // as our Jacobi rotation and we can short-circuit.
- bool changed = false;
- // The first step is to symmetrize the 2x2 matrix,
- // [ c s ]^T [ w x ] = [ p q ]
- // [ -s c ] [ y z ] [ q r ]
- T mu_1 = w + z;
- T mu_2 = x - y;
- T c, s;
- if (std::abs(mu_2) <= tol*std::abs(mu_1)) // Already symmetric (to tolerance)
- { // Note that the <= is important here
- c = T(1); // because we want to bypass the computation
- s = T(0); // of rho if mu_1 = mu_2 = 0.
- const T p = w;
- const T r = z;
- mu_1 = r - p;
- mu_2 = x + y;
- }
- else
- {
- const T rho = mu_1 / mu_2;
- s = T(1) / std::sqrt (T(1) + rho*rho); // TODO is there a native inverse square root function?
- if (rho < 0)
- s = -s;
- c = s * rho;
- mu_1 = s * (x + y) + c * (z - w); // = r - p
- mu_2 = T(2) * (c * x - s * z); // = 2*q
- changed = true;
- }
- // The second stage diagonalizes,
- // [ c2 s2 ]^T [ p q ] [ c2 s2 ] = [ d1 0 ]
- // [ -s2 c2 ] [ q r ] [ -s2 c2 ] [ 0 d2 ]
- T c_2, s_2;
- if (std::abs(mu_2) <= tol*std::abs(mu_1))
- {
- c_2 = T(1);
- s_2 = T(0);
- }
- else
- {
- const T rho_2 = mu_1 / mu_2;
- T t_2 = T(1) / (std::abs(rho_2) + std::sqrt(1 + rho_2*rho_2));
- if (rho_2 < 0)
- t_2 = -t_2;
- c_2 = T(1) / std::sqrt (T(1) + t_2*t_2);
- s_2 = c_2 * t_2;
- changed = true;
- }
- const T c_1 = c_2 * c - s_2 * s;
- const T s_1 = s_2 * c + c_2 * s;
- if (!changed)
- {
- // We've decided that the off-diagonal entries are already small
- // enough, so we'll set them to zero. This actually appears to result
- // in smaller errors than leaving them be, possibly because it prevents
- // us from trying to do extra rotations later that we don't need.
- A[k][j] = 0;
- A[j][k] = 0;
- return false;
- }
- const T d_1 = c_1*(w*c_2 - x*s_2) - s_1*(y*c_2 - z*s_2);
- const T d_2 = s_1*(w*s_2 + x*c_2) + c_1*(y*s_2 + z*c_2);
- // For the entries we just zeroed out, we'll just set them to 0, since
- // they should be 0 up to machine precision.
- A[j][j] = d_1;
- A[k][k] = d_2;
- A[k][j] = 0;
- A[j][k] = 0;
- // Rotate the entries that _weren't_ involved in the 2x2 SVD:
- for (int l = 0; l < 4; ++l)
- {
- if (l == j || l == k)
- continue;
- // Rotate on the left by
- // [ 1 ]
- // [ . ]
- // [ c2 s2 ] j
- // [ 1 ]
- // [ -s2 c2 ] k
- // [ . ]
- // [ 1 ]
- // j k
- //
- // This has the effect of adding the (weighted) ith and jth _rows_ to
- // each other.
- const T tau1 = A[j][l];
- const T tau2 = A[k][l];
- A[j][l] = c_1 * tau1 - s_1 * tau2;
- A[k][l] = s_1 * tau1 + c_1 * tau2;
- }
- for (int l = 0; l < 4; ++l)
- {
- // We set the A[j/k][j/k] entries already
- if (l == j || l == k)
- continue;
- // Rotate on the right by
- // [ 1 ]
- // [ . ]
- // [ c2 s2 ] j
- // [ 1 ]
- // [ -s2 c2 ] k
- // [ . ]
- // [ 1 ]
- // j k
- //
- // This has the effect of adding the (weighted) ith and jth _columns_ to
- // each other.
- const T tau1 = A[l][j];
- const T tau2 = A[l][k];
- A[l][j] = c_2 * tau1 - s_2 * tau2;
- A[l][k] = s_2 * tau1 + c_2 * tau2;
- }
- // Now apply the rotations to U and V:
- // Remember that we have
- // R1^T * A * R2 = D
- // This is in the 2x2 case, but after doing a bunch of these
- // we will get something like this for the 3x3 case:
- // ... R1b^T * R1a^T * A * R2a * R2b * ... = D
- // ----------------- ---------------
- // = U^T = V
- // So,
- // U = R1a * R1b * ...
- // V = R2a * R2b * ...
- jacobiRotateRight (U, j, k, c_1, s_1);
- jacobiRotateRight (V, j, k, c_2, s_2);
- return true;
- }
- template <typename T>
- void
- swapColumns (IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A, int j, int k)
- {
- for (int i = 0; i < 3; ++i)
- std::swap (A[i][j], A[i][k]);
- }
- template <typename T>
- T
- maxOffDiag (const IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A)
- {
- T result = 0;
- result = std::max (result, std::abs (A[0][1]));
- result = std::max (result, std::abs (A[0][2]));
- result = std::max (result, std::abs (A[1][0]));
- result = std::max (result, std::abs (A[1][2]));
- result = std::max (result, std::abs (A[2][0]));
- result = std::max (result, std::abs (A[2][1]));
- return result;
- }
- template <typename T>
- T
- maxOffDiag (const IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A)
- {
- T result = 0;
- for (int i = 0; i < 4; ++i)
- {
- for (int j = 0; j < 4; ++j)
- {
- if (i != j)
- result = std::max (result, std::abs (A[i][j]));
- }
- }
- return result;
- }
- template <typename T>
- void
- twoSidedJacobiSVD (IMATH_INTERNAL_NAMESPACE::Matrix33<T> A,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& U,
- IMATH_INTERNAL_NAMESPACE::Vec3<T>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& V,
- const T tol,
- const bool forcePositiveDeterminant)
- {
- // The two-sided Jacobi SVD works by repeatedly zeroing out
- // off-diagonal entries of the matrix, 2 at a time. Basically,
- // we can take our 3x3 matrix,
- // [* * *]
- // [* * *]
- // [* * *]
- // and use a pair of orthogonal transforms to zero out, say, the
- // pair of entries (0, 1) and (1, 0):
- // [ c1 s1 ] [* * *] [ c2 s2 ] [* *]
- // [-s1 c1 ] [* * *] [-s2 c2 ] = [ * *]
- // [ 1] [* * *] [ 1] [* * *]
- // When we go to zero out the next pair of entries (say, (0, 2) and (2, 0))
- // then we don't expect those entries to stay 0:
- // [ c1 s1 ] [* *] [ c2 s2 ] [* * ]
- // [-s1 c1 ] [ * *] [-s2 c2 ] = [* * *]
- // [ 1] [* * *] [ 1] [ * *]
- // However, if we keep doing this, we'll find that the off-diagonal entries
- // converge to 0 fairly quickly (convergence should be roughly cubic). The
- // result is a diagonal A matrix and a bunch of orthogonal transforms:
- // [* * *] [* ]
- // L1 L2 ... Ln [* * *] Rn ... R2 R1 = [ * ]
- // [* * *] [ *]
- // ------------ ------- ------------ -------
- // U^T A V S
- // This turns out to be highly accurate because (1) orthogonal transforms
- // are extremely stable to compute and apply (this is why QR factorization
- // works so well, FWIW) and because (2) by applying everything to the original
- // matrix A instead of computing (A^T * A) we avoid any precision loss that
- // would result from that.
- U.makeIdentity();
- V.makeIdentity();
- const int maxIter = 20; // In case we get really unlucky, prevents infinite loops
- const T absTol = tol * maxOffDiag (A); // Tolerance is in terms of the maximum
- if (absTol != 0) // _off-diagonal_ entry.
- {
- int numIter = 0;
- do
- {
- ++numIter;
- bool changed = twoSidedJacobiRotation<T, 0, 1, 2> (A, U, V, tol);
- changed = twoSidedJacobiRotation<T, 0, 2, 1> (A, U, V, tol) || changed;
- changed = twoSidedJacobiRotation<T, 1, 2, 0> (A, U, V, tol) || changed;
- if (!changed)
- break;
- } while (maxOffDiag(A) > absTol && numIter < maxIter);
- }
- // The off-diagonal entries are (effectively) 0, so whatever's left on the
- // diagonal are the singular values:
- S.x = A[0][0];
- S.y = A[1][1];
- S.z = A[2][2];
- // Nothing thus far has guaranteed that the singular values are positive,
- // so let's go back through and flip them if not (since by contract we are
- // supposed to return all positive SVs):
- for (int i = 0; i < 3; ++i)
- {
- if (S[i] < 0)
- {
- // If we flip S[i], we need to flip the corresponding column of U
- // (we could also pick V if we wanted; it doesn't really matter):
- S[i] = -S[i];
- for (int j = 0; j < 3; ++j)
- U[j][i] = -U[j][i];
- }
- }
- // Order the singular values from largest to smallest; this requires
- // exactly two passes through the data using bubble sort:
- for (int i = 0; i < 2; ++i)
- {
- for (int j = 0; j < (2 - i); ++j)
- {
- // No absolute values necessary since we already ensured that
- // they're positive:
- if (S[j] < S[j+1])
- {
- // If we swap singular values we also have to swap
- // corresponding columns in U and V:
- std::swap (S[j], S[j+1]);
- swapColumns (U, j, j+1);
- swapColumns (V, j, j+1);
- }
- }
- }
- if (forcePositiveDeterminant)
- {
- // We want to guarantee that the returned matrices always have positive
- // determinant. We can do this by adding the appropriate number of
- // matrices of the form:
- // [ 1 ]
- // L = [ 1 ]
- // [ -1 ]
- // Note that L' = L and L*L = Identity. Thus we can add:
- // U*L*L*S*V = (U*L)*(L*S)*V
- // if U has a negative determinant, and
- // U*S*L*L*V = U*(S*L)*(L*V)
- // if V has a neg. determinant.
- if (U.determinant() < 0)
- {
- for (int i = 0; i < 3; ++i)
- U[i][2] = -U[i][2];
- S.z = -S.z;
- }
-
- if (V.determinant() < 0)
- {
- for (int i = 0; i < 3; ++i)
- V[i][2] = -V[i][2];
- S.z = -S.z;
- }
- }
- }
- template <typename T>
- void
- twoSidedJacobiSVD (IMATH_INTERNAL_NAMESPACE::Matrix44<T> A,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& U,
- IMATH_INTERNAL_NAMESPACE::Vec4<T>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& V,
- const T tol,
- const bool forcePositiveDeterminant)
- {
- // Please see the Matrix33 version for a detailed description of the algorithm.
- U.makeIdentity();
- V.makeIdentity();
- const int maxIter = 20; // In case we get really unlucky, prevents infinite loops
- const T absTol = tol * maxOffDiag (A); // Tolerance is in terms of the maximum
- if (absTol != 0) // _off-diagonal_ entry.
- {
- int numIter = 0;
- do
- {
- ++numIter;
- bool changed = twoSidedJacobiRotation (A, 0, 1, U, V, tol);
- changed = twoSidedJacobiRotation (A, 0, 2, U, V, tol) || changed;
- changed = twoSidedJacobiRotation (A, 0, 3, U, V, tol) || changed;
- changed = twoSidedJacobiRotation (A, 1, 2, U, V, tol) || changed;
- changed = twoSidedJacobiRotation (A, 1, 3, U, V, tol) || changed;
- changed = twoSidedJacobiRotation (A, 2, 3, U, V, tol) || changed;
- if (!changed)
- break;
- } while (maxOffDiag(A) > absTol && numIter < maxIter);
- }
- // The off-diagonal entries are (effectively) 0, so whatever's left on the
- // diagonal are the singular values:
- S[0] = A[0][0];
- S[1] = A[1][1];
- S[2] = A[2][2];
- S[3] = A[3][3];
- // Nothing thus far has guaranteed that the singular values are positive,
- // so let's go back through and flip them if not (since by contract we are
- // supposed to return all positive SVs):
- for (int i = 0; i < 4; ++i)
- {
- if (S[i] < 0)
- {
- // If we flip S[i], we need to flip the corresponding column of U
- // (we could also pick V if we wanted; it doesn't really matter):
- S[i] = -S[i];
- for (int j = 0; j < 4; ++j)
- U[j][i] = -U[j][i];
- }
- }
- // Order the singular values from largest to smallest using insertion sort:
- for (int i = 1; i < 4; ++i)
- {
- const IMATH_INTERNAL_NAMESPACE::Vec4<T> uCol (U[0][i], U[1][i], U[2][i], U[3][i]);
- const IMATH_INTERNAL_NAMESPACE::Vec4<T> vCol (V[0][i], V[1][i], V[2][i], V[3][i]);
- const T sVal = S[i];
- int j = i - 1;
- while (std::abs (S[j]) < std::abs (sVal))
- {
- for (int k = 0; k < 4; ++k)
- U[k][j+1] = U[k][j];
- for (int k = 0; k < 4; ++k)
- V[k][j+1] = V[k][j];
- S[j+1] = S[j];
- --j;
- if (j < 0)
- break;
- }
- for (int k = 0; k < 4; ++k)
- U[k][j+1] = uCol[k];
- for (int k = 0; k < 4; ++k)
- V[k][j+1] = vCol[k];
- S[j+1] = sVal;
- }
- if (forcePositiveDeterminant)
- {
- // We want to guarantee that the returned matrices always have positive
- // determinant. We can do this by adding the appropriate number of
- // matrices of the form:
- // [ 1 ]
- // L = [ 1 ]
- // [ 1 ]
- // [ -1 ]
- // Note that L' = L and L*L = Identity. Thus we can add:
- // U*L*L*S*V = (U*L)*(L*S)*V
- // if U has a negative determinant, and
- // U*S*L*L*V = U*(S*L)*(L*V)
- // if V has a neg. determinant.
- if (U.determinant() < 0)
- {
- for (int i = 0; i < 4; ++i)
- U[i][3] = -U[i][3];
- S[3] = -S[3];
- }
-
- if (V.determinant() < 0)
- {
- for (int i = 0; i < 4; ++i)
- V[i][3] = -V[i][3];
- S[3] = -S[3];
- }
- }
- }
- }
- template <typename T>
- void
- jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix33<T>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& U,
- IMATH_INTERNAL_NAMESPACE::Vec3<T>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix33<T>& V,
- const T tol,
- const bool forcePositiveDeterminant)
- {
- twoSidedJacobiSVD (A, U, S, V, tol, forcePositiveDeterminant);
- }
- template <typename T>
- void
- jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix44<T>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& U,
- IMATH_INTERNAL_NAMESPACE::Vec4<T>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix44<T>& V,
- const T tol,
- const bool forcePositiveDeterminant)
- {
- twoSidedJacobiSVD (A, U, S, V, tol, forcePositiveDeterminant);
- }
- template IMATH_EXPORT void jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix33<float>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix33<float>& U,
- IMATH_INTERNAL_NAMESPACE::Vec3<float>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix33<float>& V,
- const float tol,
- const bool forcePositiveDeterminant);
- template IMATH_EXPORT void jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix33<double>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix33<double>& U,
- IMATH_INTERNAL_NAMESPACE::Vec3<double>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix33<double>& V,
- const double tol,
- const bool forcePositiveDeterminant);
- template IMATH_EXPORT void jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix44<float>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix44<float>& U,
- IMATH_INTERNAL_NAMESPACE::Vec4<float>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix44<float>& V,
- const float tol,
- const bool forcePositiveDeterminant);
- template IMATH_EXPORT void jacobiSVD (const IMATH_INTERNAL_NAMESPACE::Matrix44<double>& A,
- IMATH_INTERNAL_NAMESPACE::Matrix44<double>& U,
- IMATH_INTERNAL_NAMESPACE::Vec4<double>& S,
- IMATH_INTERNAL_NAMESPACE::Matrix44<double>& V,
- const double tol,
- const bool forcePositiveDeterminant);
- namespace
- {
- template <int j, int k, typename TM>
- inline
- void
- jacobiRotateRight (TM& A,
- const typename TM::BaseType s,
- const typename TM::BaseType tau)
- {
- typedef typename TM::BaseType T;
- for (unsigned int i = 0; i < TM::dimensions(); ++i)
- {
- const T nu1 = A[i][j];
- const T nu2 = A[i][k];
- A[i][j] -= s * (nu2 + tau * nu1);
- A[i][k] += s * (nu1 - tau * nu2);
- }
- }
- template <int j, int k, int l, typename T>
- bool
- jacobiRotation (Matrix33<T>& A,
- Matrix33<T>& V,
- Vec3<T>& Z,
- const T tol)
- {
- // Load everything into local variables to make things easier on the
- // optimizer:
- const T x = A[j][j];
- const T y = A[j][k];
- const T z = A[k][k];
- // The first stage diagonalizes,
- // [ c s ]^T [ x y ] [ c -s ] = [ d1 0 ]
- // [ -s c ] [ y z ] [ s c ] [ 0 d2 ]
- const T mu1 = z - x;
- const T mu2 = 2 * y;
- if (std::abs(mu2) <= tol*std::abs(mu1))
- {
- // We've decided that the off-diagonal entries are already small
- // enough, so we'll set them to zero. This actually appears to result
- // in smaller errors than leaving them be, possibly because it prevents
- // us from trying to do extra rotations later that we don't need.
- A[j][k] = 0;
- return false;
- }
- const T rho = mu1 / mu2;
- const T t = (rho < 0 ? T(-1) : T(1)) / (std::abs(rho) + std::sqrt(1 + rho*rho));
- const T c = T(1) / std::sqrt (T(1) + t*t);
- const T s = t * c;
- const T tau = s / (T(1) + c);
- const T h = t * y;
- // Update diagonal elements.
- Z[j] -= h;
- Z[k] += h;
- A[j][j] -= h;
- A[k][k] += h;
- // For the entries we just zeroed out, we'll just set them to 0, since
- // they should be 0 up to machine precision.
- A[j][k] = 0;
- // We only update upper triagnular elements of A, since
- // A is supposed to be symmetric.
- T& offd1 = l < j ? A[l][j] : A[j][l];
- T& offd2 = l < k ? A[l][k] : A[k][l];
- const T nu1 = offd1;
- const T nu2 = offd2;
- offd1 = nu1 - s * (nu2 + tau * nu1);
- offd2 = nu2 + s * (nu1 - tau * nu2);
- // Apply rotation to V
- jacobiRotateRight<j, k> (V, s, tau);
- return true;
- }
- template <int j, int k, int l1, int l2, typename T>
- bool
- jacobiRotation (Matrix44<T>& A,
- Matrix44<T>& V,
- Vec4<T>& Z,
- const T tol)
- {
- const T x = A[j][j];
- const T y = A[j][k];
- const T z = A[k][k];
- const T mu1 = z - x;
- const T mu2 = T(2) * y;
- // Let's see if rho^(-1) = mu2 / mu1 is less than tol
- // This test also checks if rho^2 will overflow
- // when tol^(-1) < sqrt(limits<T>::max()).
- if (std::abs(mu2) <= tol*std::abs(mu1))
- {
- A[j][k] = 0;
- return true;
- }
- const T rho = mu1 / mu2;
- const T t = (rho < 0 ? T(-1) : T(1)) / (std::abs(rho) + std::sqrt(1 + rho*rho));
- const T c = T(1) / std::sqrt (T(1) + t*t);
- const T s = c * t;
- const T tau = s / (T(1) + c);
- const T h = t * y;
- Z[j] -= h;
- Z[k] += h;
- A[j][j] -= h;
- A[k][k] += h;
- A[j][k] = 0;
- {
- T& offd1 = l1 < j ? A[l1][j] : A[j][l1];
- T& offd2 = l1 < k ? A[l1][k] : A[k][l1];
- const T nu1 = offd1;
- const T nu2 = offd2;
- offd1 -= s * (nu2 + tau * nu1);
- offd2 += s * (nu1 - tau * nu2);
- }
- {
- T& offd1 = l2 < j ? A[l2][j] : A[j][l2];
- T& offd2 = l2 < k ? A[l2][k] : A[k][l2];
- const T nu1 = offd1;
- const T nu2 = offd2;
- offd1 -= s * (nu2 + tau * nu1);
- offd2 += s * (nu1 - tau * nu2);
- }
- jacobiRotateRight<j, k> (V, s, tau);
- return true;
- }
- template <typename TM>
- inline
- typename TM::BaseType
- maxOffDiagSymm (const TM& A)
- {
- typedef typename TM::BaseType T;
- T result = 0;
- for (unsigned int i = 0; i < TM::dimensions(); ++i)
- for (unsigned int j = i+1; j < TM::dimensions(); ++j)
- result = std::max (result, std::abs (A[i][j]));
- return result;
- }
- } // namespace
- template <typename T>
- void
- jacobiEigenSolver (Matrix33<T>& A,
- Vec3<T>& S,
- Matrix33<T>& V,
- const T tol)
- {
- V.makeIdentity();
- for(int i = 0; i < 3; ++i) {
- S[i] = A[i][i];
- }
- const int maxIter = 20; // In case we get really unlucky, prevents infinite loops
- const T absTol = tol * maxOffDiagSymm (A); // Tolerance is in terms of the maximum
- if (absTol != 0) // _off-diagonal_ entry.
- {
- int numIter = 0;
- do
- {
- // Z is for accumulating small changes (h) to diagonal entries
- // of A for one sweep. Adding h's directly to A might cause
- // a cancellation effect when h is relatively very small to
- // the corresponding diagonal entry of A and
- // this will increase numerical errors
- Vec3<T> Z(0, 0, 0);
- ++numIter;
- bool changed = jacobiRotation<0, 1, 2> (A, V, Z, tol);
- changed = jacobiRotation<0, 2, 1> (A, V, Z, tol) || changed;
- changed = jacobiRotation<1, 2, 0> (A, V, Z, tol) || changed;
- // One sweep passed. Add accumulated changes (Z) to singular values (S)
- // Update diagonal elements of A for better accuracy as well.
- for(int i = 0; i < 3; ++i) {
- A[i][i] = S[i] += Z[i];
- }
- if (!changed)
- break;
- } while (maxOffDiagSymm(A) > absTol && numIter < maxIter);
- }
- }
- template <typename T>
- void
- jacobiEigenSolver (Matrix44<T>& A,
- Vec4<T>& S,
- Matrix44<T>& V,
- const T tol)
- {
- V.makeIdentity();
- for(int i = 0; i < 4; ++i) {
- S[i] = A[i][i];
- }
- const int maxIter = 20; // In case we get really unlucky, prevents infinite loops
- const T absTol = tol * maxOffDiagSymm (A); // Tolerance is in terms of the maximum
- if (absTol != 0) // _off-diagonal_ entry.
- {
- int numIter = 0;
- do
- {
- ++numIter;
- Vec4<T> Z(0, 0, 0, 0);
- bool changed = jacobiRotation<0, 1, 2, 3> (A, V, Z, tol);
- changed = jacobiRotation<0, 2, 1, 3> (A, V, Z, tol) || changed;
- changed = jacobiRotation<0, 3, 1, 2> (A, V, Z, tol) || changed;
- changed = jacobiRotation<1, 2, 0, 3> (A, V, Z, tol) || changed;
- changed = jacobiRotation<1, 3, 0, 2> (A, V, Z, tol) || changed;
- changed = jacobiRotation<2, 3, 0, 1> (A, V, Z, tol) || changed;
- for(int i = 0; i < 4; ++i) {
- A[i][i] = S[i] += Z[i];
- }
- if (!changed)
- break;
- } while (maxOffDiagSymm(A) > absTol && numIter < maxIter);
- }
- }
- template <typename TM, typename TV>
- void
- maxEigenVector (TM& A, TV& V)
- {
- TV S;
- TM MV;
- jacobiEigenSolver(A, S, MV);
- int maxIdx(0);
- for(unsigned int i = 1; i < TV::dimensions(); ++i)
- {
- if(std::abs(S[i]) > std::abs(S[maxIdx]))
- maxIdx = i;
- }
- for(unsigned int i = 0; i < TV::dimensions(); ++i)
- V[i] = MV[i][maxIdx];
- }
- template <typename TM, typename TV>
- void
- minEigenVector (TM& A, TV& V)
- {
- TV S;
- TM MV;
- jacobiEigenSolver(A, S, MV);
- int minIdx(0);
- for(unsigned int i = 1; i < TV::dimensions(); ++i)
- {
- if(std::abs(S[i]) < std::abs(S[minIdx]))
- minIdx = i;
- }
- for(unsigned int i = 0; i < TV::dimensions(); ++i)
- V[i] = MV[i][minIdx];
- }
- template IMATH_EXPORT void jacobiEigenSolver (Matrix33<float>& A,
- Vec3<float>& S,
- Matrix33<float>& V,
- const float tol);
- template IMATH_EXPORT void jacobiEigenSolver (Matrix33<double>& A,
- Vec3<double>& S,
- Matrix33<double>& V,
- const double tol);
- template IMATH_EXPORT void jacobiEigenSolver (Matrix44<float>& A,
- Vec4<float>& S,
- Matrix44<float>& V,
- const float tol);
- template IMATH_EXPORT void jacobiEigenSolver (Matrix44<double>& A,
- Vec4<double>& S,
- Matrix44<double>& V,
- const double tol);
- template IMATH_EXPORT void maxEigenVector (Matrix33<float>& A,
- Vec3<float>& S);
- template IMATH_EXPORT void maxEigenVector (Matrix44<float>& A,
- Vec4<float>& S);
- template IMATH_EXPORT void maxEigenVector (Matrix33<double>& A,
- Vec3<double>& S);
- template IMATH_EXPORT void maxEigenVector (Matrix44<double>& A,
- Vec4<double>& S);
- template IMATH_EXPORT void minEigenVector (Matrix33<float>& A,
- Vec3<float>& S);
- template IMATH_EXPORT void minEigenVector (Matrix44<float>& A,
- Vec4<float>& S);
- template IMATH_EXPORT void minEigenVector (Matrix33<double>& A,
- Vec3<double>& S);
- template IMATH_EXPORT void minEigenVector (Matrix44<double>& A,
- Vec4<double>& S);
- IMATH_INTERNAL_NAMESPACE_SOURCE_EXIT
|