123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHLINEALGO_H
- #define INCLUDED_IMATHLINEALGO_H
- //------------------------------------------------------------------
- //
- // This file contains algorithms applied to or in conjunction
- // with lines (Imath::Line). These algorithms may require
- // more headers to compile. The assumption made is that these
- // functions are called much less often than the basic line
- // functions or these functions require more support classes
- //
- // Contains:
- //
- // bool closestPoints(const Line<T>& line1,
- // const Line<T>& line2,
- // Vec3<T>& point1,
- // Vec3<T>& point2)
- //
- // bool intersect( const Line3<T> &line,
- // const Vec3<T> &v0,
- // const Vec3<T> &v1,
- // const Vec3<T> &v2,
- // Vec3<T> &pt,
- // Vec3<T> &barycentric,
- // bool &front)
- //
- // V3f
- // closestVertex(const Vec3<T> &v0,
- // const Vec3<T> &v1,
- // const Vec3<T> &v2,
- // const Line3<T> &l)
- //
- // V3f
- // rotatePoint(const Vec3<T> p, Line3<T> l, float angle)
- //
- //------------------------------------------------------------------
- #include "ImathLine.h"
- #include "ImathVecAlgo.h"
- #include "ImathFun.h"
- #include "ImathNamespace.h"
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- template <class T>
- bool
- closestPoints
- (const Line3<T>& line1,
- const Line3<T>& line2,
- Vec3<T>& point1,
- Vec3<T>& point2)
- {
- //
- // Compute point1 and point2 such that point1 is on line1, point2
- // is on line2 and the distance between point1 and point2 is minimal.
- // This function returns true if point1 and point2 can be computed,
- // or false if line1 and line2 are parallel or nearly parallel.
- // This function assumes that line1.dir and line2.dir are normalized.
- //
- Vec3<T> w = line1.pos - line2.pos;
- T d1w = line1.dir ^ w;
- T d2w = line2.dir ^ w;
- T d1d2 = line1.dir ^ line2.dir;
- T n1 = d1d2 * d2w - d1w;
- T n2 = d2w - d1d2 * d1w;
- T d = 1 - d1d2 * d1d2;
- T absD = abs (d);
- if ((absD > 1) ||
- (abs (n1) < limits<T>::max() * absD &&
- abs (n2) < limits<T>::max() * absD))
- {
- point1 = line1 (n1 / d);
- point2 = line2 (n2 / d);
- return true;
- }
- else
- {
- return false;
- }
- }
- template <class T>
- bool
- intersect
- (const Line3<T> &line,
- const Vec3<T> &v0,
- const Vec3<T> &v1,
- const Vec3<T> &v2,
- Vec3<T> &pt,
- Vec3<T> &barycentric,
- bool &front)
- {
- //
- // Given a line and a triangle (v0, v1, v2), the intersect() function
- // finds the intersection of the line and the plane that contains the
- // triangle.
- //
- // If the intersection point cannot be computed, either because the
- // line and the triangle's plane are nearly parallel or because the
- // triangle's area is very small, intersect() returns false.
- //
- // If the intersection point is outside the triangle, intersect
- // returns false.
- //
- // If the intersection point, pt, is inside the triangle, intersect()
- // computes a front-facing flag and the barycentric coordinates of
- // the intersection point, and returns true.
- //
- // The front-facing flag is true if the dot product of the triangle's
- // normal, (v2-v1)%(v1-v0), and the line's direction is negative.
- //
- // The barycentric coordinates have the following property:
- //
- // pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z
- //
- Vec3<T> edge0 = v1 - v0;
- Vec3<T> edge1 = v2 - v1;
- Vec3<T> normal = edge1 % edge0;
- T l = normal.length();
- if (l != 0)
- normal /= l;
- else
- return false; // zero-area triangle
- //
- // d is the distance of line.pos from the plane that contains the triangle.
- // The intersection point is at line.pos + (d/nd) * line.dir.
- //
- T d = normal ^ (v0 - line.pos);
- T nd = normal ^ line.dir;
- if (abs (nd) > 1 || abs (d) < limits<T>::max() * abs (nd))
- pt = line (d / nd);
- else
- return false; // line and plane are nearly parallel
- //
- // Compute the barycentric coordinates of the intersection point.
- // The intersection is inside the triangle if all three barycentric
- // coordinates are between zero and one.
- //
- {
- Vec3<T> en = edge0.normalized();
- Vec3<T> a = pt - v0;
- Vec3<T> b = v2 - v0;
- Vec3<T> c = (a - en * (en ^ a));
- Vec3<T> d = (b - en * (en ^ b));
- T e = c ^ d;
- T f = d ^ d;
- if (e >= 0 && e <= f)
- barycentric.z = e / f;
- else
- return false; // outside
- }
- {
- Vec3<T> en = edge1.normalized();
- Vec3<T> a = pt - v1;
- Vec3<T> b = v0 - v1;
- Vec3<T> c = (a - en * (en ^ a));
- Vec3<T> d = (b - en * (en ^ b));
- T e = c ^ d;
- T f = d ^ d;
- if (e >= 0 && e <= f)
- barycentric.x = e / f;
- else
- return false; // outside
- }
- barycentric.y = 1 - barycentric.x - barycentric.z;
- if (barycentric.y < 0)
- return false; // outside
- front = ((line.dir ^ normal) < 0);
- return true;
- }
- template <class T>
- Vec3<T>
- closestVertex
- (const Vec3<T> &v0,
- const Vec3<T> &v1,
- const Vec3<T> &v2,
- const Line3<T> &l)
- {
- Vec3<T> nearest = v0;
- T neardot = (v0 - l.closestPointTo(v0)).length2();
-
- T tmp = (v1 - l.closestPointTo(v1)).length2();
- if (tmp < neardot)
- {
- neardot = tmp;
- nearest = v1;
- }
- tmp = (v2 - l.closestPointTo(v2)).length2();
- if (tmp < neardot)
- {
- neardot = tmp;
- nearest = v2;
- }
- return nearest;
- }
- template <class T>
- Vec3<T>
- rotatePoint (const Vec3<T> p, Line3<T> l, T angle)
- {
- //
- // Rotate the point p around the line l by the given angle.
- //
- //
- // Form a coordinate frame with <x,y,a>. The rotation is the in xy
- // plane.
- //
- Vec3<T> q = l.closestPointTo(p);
- Vec3<T> x = p - q;
- T radius = x.length();
- x.normalize();
- Vec3<T> y = (x % l.dir).normalize();
- T cosangle = Math<T>::cos(angle);
- T sinangle = Math<T>::sin(angle);
- Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle;
- return r;
- }
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHLINEALGO_H
|