123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHEULER_H
- #define INCLUDED_IMATHEULER_H
- //----------------------------------------------------------------------
- //
- // template class Euler<T>
- //
- // This class represents euler angle orientations. The class
- // inherits from Vec3 to it can be freely cast. The additional
- // information is the euler priorities rep. This class is
- // essentially a rip off of Ken Shoemake's GemsIV code. It has
- // been modified minimally to make it more understandable, but
- // hardly enough to make it easy to grok completely.
- //
- // There are 24 possible combonations of Euler angle
- // representations of which 12 are common in CG and you will
- // probably only use 6 of these which in this scheme are the
- // non-relative-non-repeating types.
- //
- // The representations can be partitioned according to two
- // criteria:
- //
- // 1) Are the angles measured relative to a set of fixed axis
- // or relative to each other (the latter being what happens
- // when rotation matrices are multiplied together and is
- // almost ubiquitous in the cg community)
- //
- // 2) Is one of the rotations repeated (ala XYX rotation)
- //
- // When you construct a given representation from scratch you
- // must order the angles according to their priorities. So, the
- // easiest is a softimage or aerospace (yaw/pitch/roll) ordering
- // of ZYX.
- //
- // float x_rot = 1;
- // float y_rot = 2;
- // float z_rot = 3;
- //
- // Eulerf angles(z_rot, y_rot, x_rot, Eulerf::ZYX);
- // -or-
- // Eulerf angles( V3f(z_rot,y_rot,z_rot), Eulerf::ZYX );
- //
- // If instead, the order was YXZ for instance you would have to
- // do this:
- //
- // float x_rot = 1;
- // float y_rot = 2;
- // float z_rot = 3;
- //
- // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ);
- // -or-
- // Eulerf angles( V3f(y_rot,x_rot,z_rot), Eulerf::YXZ );
- //
- // Notice how the order you put the angles into the three slots
- // should correspond to the enum (YXZ) ordering. The input angle
- // vector is called the "ijk" vector -- not an "xyz" vector. The
- // ijk vector order is the same as the enum. If you treat the
- // Euler<> as a Vec<> (which it inherts from) you will find the
- // angles are ordered in the same way, i.e.:
- //
- // V3f v = angles;
- // // v.x == y_rot, v.y == x_rot, v.z == z_rot
- //
- // If you just want the x, y, and z angles stored in a vector in
- // that order, you can do this:
- //
- // V3f v = angles.toXYZVector()
- // // v.x == x_rot, v.y == y_rot, v.z == z_rot
- //
- // If you want to set the Euler with an XYZVector use the
- // optional layout argument:
- //
- // Eulerf angles(x_rot, y_rot, z_rot,
- // Eulerf::YXZ,
- // Eulerf::XYZLayout);
- //
- // This is the same as:
- //
- // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ);
- //
- // Note that this won't do anything intelligent if you have a
- // repeated axis in the euler angles (e.g. XYX)
- //
- // If you need to use the "relative" versions of these, you will
- // need to use the "r" enums.
- //
- // The units of the rotation angles are assumed to be radians.
- //
- //----------------------------------------------------------------------
- #include "ImathMath.h"
- #include "ImathVec.h"
- #include "ImathQuat.h"
- #include "ImathMatrix.h"
- #include "ImathLimits.h"
- #include "ImathNamespace.h"
- #include <iostream>
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
- // Disable MS VC++ warnings about conversion from double to float
- #pragma warning(disable:4244)
- #endif
- template <class T>
- class Euler : public Vec3<T>
- {
- public:
-
- using Vec3<T>::x;
- using Vec3<T>::y;
- using Vec3<T>::z;
- enum Order
- {
- //
- // All 24 possible orderings
- //
- XYZ = 0x0101, // "usual" orderings
- XZY = 0x0001,
- YZX = 0x1101,
- YXZ = 0x1001,
- ZXY = 0x2101,
- ZYX = 0x2001,
-
- XZX = 0x0011, // first axis repeated
- XYX = 0x0111,
- YXY = 0x1011,
- YZY = 0x1111,
- ZYZ = 0x2011,
- ZXZ = 0x2111,
- XYZr = 0x2000, // relative orderings -- not common
- XZYr = 0x2100,
- YZXr = 0x1000,
- YXZr = 0x1100,
- ZXYr = 0x0000,
- ZYXr = 0x0100,
-
- XZXr = 0x2110, // relative first axis repeated
- XYXr = 0x2010,
- YXYr = 0x1110,
- YZYr = 0x1010,
- ZYZr = 0x0110,
- ZXZr = 0x0010,
- // ||||
- // VVVV
- // Legend: ABCD
- // A -> Initial Axis (0==x, 1==y, 2==z)
- // B -> Parity Even (1==true)
- // C -> Initial Repeated (1==true)
- // D -> Frame Static (1==true)
- //
- Legal = XYZ | XZY | YZX | YXZ | ZXY | ZYX |
- XZX | XYX | YXY | YZY | ZYZ | ZXZ |
- XYZr| XZYr| YZXr| YXZr| ZXYr| ZYXr|
- XZXr| XYXr| YXYr| YZYr| ZYZr| ZXZr,
- Min = 0x0000,
- Max = 0x2111,
- Default = XYZ
- };
- enum Axis { X = 0, Y = 1, Z = 2 };
- enum InputLayout { XYZLayout, IJKLayout };
- //--------------------------------------------------------------------
- // Constructors -- all default to ZYX non-relative ala softimage
- // (where there is no argument to specify it)
- //
- // The Euler-from-matrix constructors assume that the matrix does
- // not include shear or non-uniform scaling, but the constructors
- // do not examine the matrix to verify this assumption. If necessary,
- // you can adjust the matrix by calling the removeScalingAndShear()
- // function, defined in ImathMatrixAlgo.h.
- //--------------------------------------------------------------------
- Euler();
- Euler(const Euler&);
- Euler(Order p);
- Euler(const Vec3<T> &v, Order o = Default, InputLayout l = IJKLayout);
- Euler(T i, T j, T k, Order o = Default, InputLayout l = IJKLayout);
- Euler(const Euler<T> &euler, Order newp);
- Euler(const Matrix33<T> &, Order o = Default);
- Euler(const Matrix44<T> &, Order o = Default);
- //---------------------------------
- // Algebraic functions/ Operators
- //---------------------------------
- const Euler<T>& operator= (const Euler<T>&);
- const Euler<T>& operator= (const Vec3<T>&);
- //--------------------------------------------------------
- // Set the euler value
- // This does NOT convert the angles, but setXYZVector()
- // does reorder the input vector.
- //--------------------------------------------------------
- static bool legal(Order);
- void setXYZVector(const Vec3<T> &);
- Order order() const;
- void setOrder(Order);
- void set(Axis initial,
- bool relative,
- bool parityEven,
- bool firstRepeats);
- //------------------------------------------------------------
- // Conversions, toXYZVector() reorders the angles so that
- // the X rotation comes first, followed by the Y and Z
- // in cases like XYX ordering, the repeated angle will be
- // in the "z" component
- //
- // The Euler-from-matrix extract() functions assume that the
- // matrix does not include shear or non-uniform scaling, but
- // the extract() functions do not examine the matrix to verify
- // this assumption. If necessary, you can adjust the matrix
- // by calling the removeScalingAndShear() function, defined
- // in ImathMatrixAlgo.h.
- //------------------------------------------------------------
- void extract(const Matrix33<T>&);
- void extract(const Matrix44<T>&);
- void extract(const Quat<T>&);
- Matrix33<T> toMatrix33() const;
- Matrix44<T> toMatrix44() const;
- Quat<T> toQuat() const;
- Vec3<T> toXYZVector() const;
- //---------------------------------------------------
- // Use this function to unpack angles from ijk form
- //---------------------------------------------------
- void angleOrder(int &i, int &j, int &k) const;
- //---------------------------------------------------
- // Use this function to determine mapping from xyz to ijk
- // - reshuffles the xyz to match the order
- //---------------------------------------------------
-
- void angleMapping(int &i, int &j, int &k) const;
- //----------------------------------------------------------------------
- //
- // Utility methods for getting continuous rotations. None of these
- // methods change the orientation given by its inputs (or at least
- // that is the intent).
- //
- // angleMod() converts an angle to its equivalent in [-PI, PI]
- //
- // simpleXYZRotation() adjusts xyzRot so that its components differ
- // from targetXyzRot by no more than +-PI
- //
- // nearestRotation() adjusts xyzRot so that its components differ
- // from targetXyzRot by as little as possible.
- // Note that xyz here really means ijk, because
- // the order must be provided.
- //
- // makeNear() adjusts "this" Euler so that its components differ
- // from target by as little as possible. This method
- // might not make sense for Eulers with different order
- // and it probably doesn't work for repeated axis and
- // relative orderings (TODO).
- //
- //-----------------------------------------------------------------------
- static float angleMod (T angle);
- static void simpleXYZRotation (Vec3<T> &xyzRot,
- const Vec3<T> &targetXyzRot);
- static void nearestRotation (Vec3<T> &xyzRot,
- const Vec3<T> &targetXyzRot,
- Order order = XYZ);
- void makeNear (const Euler<T> &target);
- bool frameStatic() const { return _frameStatic; }
- bool initialRepeated() const { return _initialRepeated; }
- bool parityEven() const { return _parityEven; }
- Axis initialAxis() const { return _initialAxis; }
- protected:
- bool _frameStatic : 1; // relative or static rotations
- bool _initialRepeated : 1; // init axis repeated as last
- bool _parityEven : 1; // "parity of axis permutation"
- #if defined _WIN32 || defined _WIN64
- Axis _initialAxis ; // First axis of rotation
- #else
- Axis _initialAxis : 2; // First axis of rotation
- #endif
- };
- //--------------------
- // Convenient typedefs
- //--------------------
- typedef Euler<float> Eulerf;
- typedef Euler<double> Eulerd;
- //---------------
- // Implementation
- //---------------
- template<class T>
- inline void
- Euler<T>::angleOrder(int &i, int &j, int &k) const
- {
- i = _initialAxis;
- j = _parityEven ? (i+1)%3 : (i > 0 ? i-1 : 2);
- k = _parityEven ? (i > 0 ? i-1 : 2) : (i+1)%3;
- }
- template<class T>
- inline void
- Euler<T>::angleMapping(int &i, int &j, int &k) const
- {
- int m[3];
- m[_initialAxis] = 0;
- m[(_initialAxis+1) % 3] = _parityEven ? 1 : 2;
- m[(_initialAxis+2) % 3] = _parityEven ? 2 : 1;
- i = m[0];
- j = m[1];
- k = m[2];
- }
- template<class T>
- inline void
- Euler<T>::setXYZVector(const Vec3<T> &v)
- {
- int i,j,k;
- angleMapping(i,j,k);
- (*this)[i] = v.x;
- (*this)[j] = v.y;
- (*this)[k] = v.z;
- }
- template<class T>
- inline Vec3<T>
- Euler<T>::toXYZVector() const
- {
- int i,j,k;
- angleMapping(i,j,k);
- return Vec3<T>((*this)[i],(*this)[j],(*this)[k]);
- }
- template<class T>
- Euler<T>::Euler() :
- Vec3<T>(0,0,0),
- _frameStatic(true),
- _initialRepeated(false),
- _parityEven(true),
- _initialAxis(X)
- {}
- template<class T>
- Euler<T>::Euler(typename Euler<T>::Order p) :
- Vec3<T>(0,0,0),
- _frameStatic(true),
- _initialRepeated(false),
- _parityEven(true),
- _initialAxis(X)
- {
- setOrder(p);
- }
- template<class T>
- inline Euler<T>::Euler( const Vec3<T> &v,
- typename Euler<T>::Order p,
- typename Euler<T>::InputLayout l )
- {
- setOrder(p);
- if ( l == XYZLayout ) setXYZVector(v);
- else { x = v.x; y = v.y; z = v.z; }
- }
- template<class T>
- inline Euler<T>::Euler(const Euler<T> &euler)
- {
- operator=(euler);
- }
- template<class T>
- inline Euler<T>::Euler(const Euler<T> &euler,Order p)
- {
- setOrder(p);
- Matrix33<T> M = euler.toMatrix33();
- extract(M);
- }
- template<class T>
- inline Euler<T>::Euler( T xi, T yi, T zi,
- typename Euler<T>::Order p,
- typename Euler<T>::InputLayout l)
- {
- setOrder(p);
- if ( l == XYZLayout ) setXYZVector(Vec3<T>(xi,yi,zi));
- else { x = xi; y = yi; z = zi; }
- }
- template<class T>
- inline Euler<T>::Euler( const Matrix33<T> &M, typename Euler::Order p )
- {
- setOrder(p);
- extract(M);
- }
- template<class T>
- inline Euler<T>::Euler( const Matrix44<T> &M, typename Euler::Order p )
- {
- setOrder(p);
- extract(M);
- }
- template<class T>
- inline void Euler<T>::extract(const Quat<T> &q)
- {
- extract(q.toMatrix33());
- }
- template<class T>
- void Euler<T>::extract(const Matrix33<T> &M)
- {
- int i,j,k;
- angleOrder(i,j,k);
- if (_initialRepeated)
- {
- //
- // Extract the first angle, x.
- //
- x = Math<T>::atan2 (M[j][i], M[k][i]);
- //
- // Remove the x rotation from M, so that the remaining
- // rotation, N, is only around two axes, and gimbal lock
- // cannot occur.
- //
- Vec3<T> r (0, 0, 0);
- r[i] = (_parityEven? -x: x);
- Matrix44<T> N;
- N.rotate (r);
- N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0,
- M[1][0], M[1][1], M[1][2], 0,
- M[2][0], M[2][1], M[2][2], 0,
- 0, 0, 0, 1);
- //
- // Extract the other two angles, y and z, from N.
- //
- T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]);
- y = Math<T>::atan2 (sy, N[i][i]);
- z = Math<T>::atan2 (N[j][k], N[j][j]);
- }
- else
- {
- //
- // Extract the first angle, x.
- //
- x = Math<T>::atan2 (M[j][k], M[k][k]);
- //
- // Remove the x rotation from M, so that the remaining
- // rotation, N, is only around two axes, and gimbal lock
- // cannot occur.
- //
- Vec3<T> r (0, 0, 0);
- r[i] = (_parityEven? -x: x);
- Matrix44<T> N;
- N.rotate (r);
- N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0,
- M[1][0], M[1][1], M[1][2], 0,
- M[2][0], M[2][1], M[2][2], 0,
- 0, 0, 0, 1);
- //
- // Extract the other two angles, y and z, from N.
- //
- T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]);
- y = Math<T>::atan2 (-N[i][k], cy);
- z = Math<T>::atan2 (-N[j][i], N[j][j]);
- }
- if (!_parityEven)
- *this *= -1;
- if (!_frameStatic)
- {
- T t = x;
- x = z;
- z = t;
- }
- }
- template<class T>
- void Euler<T>::extract(const Matrix44<T> &M)
- {
- int i,j,k;
- angleOrder(i,j,k);
- if (_initialRepeated)
- {
- //
- // Extract the first angle, x.
- //
- x = Math<T>::atan2 (M[j][i], M[k][i]);
- //
- // Remove the x rotation from M, so that the remaining
- // rotation, N, is only around two axes, and gimbal lock
- // cannot occur.
- //
- Vec3<T> r (0, 0, 0);
- r[i] = (_parityEven? -x: x);
- Matrix44<T> N;
- N.rotate (r);
- N = N * M;
- //
- // Extract the other two angles, y and z, from N.
- //
- T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]);
- y = Math<T>::atan2 (sy, N[i][i]);
- z = Math<T>::atan2 (N[j][k], N[j][j]);
- }
- else
- {
- //
- // Extract the first angle, x.
- //
- x = Math<T>::atan2 (M[j][k], M[k][k]);
- //
- // Remove the x rotation from M, so that the remaining
- // rotation, N, is only around two axes, and gimbal lock
- // cannot occur.
- //
- Vec3<T> r (0, 0, 0);
- r[i] = (_parityEven? -x: x);
- Matrix44<T> N;
- N.rotate (r);
- N = N * M;
- //
- // Extract the other two angles, y and z, from N.
- //
- T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]);
- y = Math<T>::atan2 (-N[i][k], cy);
- z = Math<T>::atan2 (-N[j][i], N[j][j]);
- }
- if (!_parityEven)
- *this *= -1;
- if (!_frameStatic)
- {
- T t = x;
- x = z;
- z = t;
- }
- }
- template<class T>
- Matrix33<T> Euler<T>::toMatrix33() const
- {
- int i,j,k;
- angleOrder(i,j,k);
- Vec3<T> angles;
- if ( _frameStatic ) angles = (*this);
- else angles = Vec3<T>(z,y,x);
- if ( !_parityEven ) angles *= -1.0;
- T ci = Math<T>::cos(angles.x);
- T cj = Math<T>::cos(angles.y);
- T ch = Math<T>::cos(angles.z);
- T si = Math<T>::sin(angles.x);
- T sj = Math<T>::sin(angles.y);
- T sh = Math<T>::sin(angles.z);
- T cc = ci*ch;
- T cs = ci*sh;
- T sc = si*ch;
- T ss = si*sh;
- Matrix33<T> M;
- if ( _initialRepeated )
- {
- M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci;
- M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc;
- M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss;
- }
- else
- {
- M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss;
- M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc;
- M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci;
- }
- return M;
- }
- template<class T>
- Matrix44<T> Euler<T>::toMatrix44() const
- {
- int i,j,k;
- angleOrder(i,j,k);
- Vec3<T> angles;
- if ( _frameStatic ) angles = (*this);
- else angles = Vec3<T>(z,y,x);
- if ( !_parityEven ) angles *= -1.0;
- T ci = Math<T>::cos(angles.x);
- T cj = Math<T>::cos(angles.y);
- T ch = Math<T>::cos(angles.z);
- T si = Math<T>::sin(angles.x);
- T sj = Math<T>::sin(angles.y);
- T sh = Math<T>::sin(angles.z);
- T cc = ci*ch;
- T cs = ci*sh;
- T sc = si*ch;
- T ss = si*sh;
- Matrix44<T> M;
- if ( _initialRepeated )
- {
- M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci;
- M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc;
- M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss;
- }
- else
- {
- M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss;
- M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc;
- M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci;
- }
- return M;
- }
- template<class T>
- Quat<T> Euler<T>::toQuat() const
- {
- Vec3<T> angles;
- int i,j,k;
- angleOrder(i,j,k);
- if ( _frameStatic ) angles = (*this);
- else angles = Vec3<T>(z,y,x);
- if ( !_parityEven ) angles.y = -angles.y;
- T ti = angles.x*0.5;
- T tj = angles.y*0.5;
- T th = angles.z*0.5;
- T ci = Math<T>::cos(ti);
- T cj = Math<T>::cos(tj);
- T ch = Math<T>::cos(th);
- T si = Math<T>::sin(ti);
- T sj = Math<T>::sin(tj);
- T sh = Math<T>::sin(th);
- T cc = ci*ch;
- T cs = ci*sh;
- T sc = si*ch;
- T ss = si*sh;
- T parity = _parityEven ? 1.0 : -1.0;
- Quat<T> q;
- Vec3<T> a;
- if ( _initialRepeated )
- {
- a[i] = cj*(cs + sc);
- a[j] = sj*(cc + ss) * parity,
- a[k] = sj*(cs - sc);
- q.r = cj*(cc - ss);
- }
- else
- {
- a[i] = cj*sc - sj*cs,
- a[j] = (cj*ss + sj*cc) * parity,
- a[k] = cj*cs - sj*sc;
- q.r = cj*cc + sj*ss;
- }
- q.v = a;
- return q;
- }
- template<class T>
- inline bool
- Euler<T>::legal(typename Euler<T>::Order order)
- {
- return (order & ~Legal) ? false : true;
- }
- template<class T>
- typename Euler<T>::Order
- Euler<T>::order() const
- {
- int foo = (_initialAxis == Z ? 0x2000 : (_initialAxis == Y ? 0x1000 : 0));
- if (_parityEven) foo |= 0x0100;
- if (_initialRepeated) foo |= 0x0010;
- if (_frameStatic) foo++;
- return (Order)foo;
- }
- template<class T>
- inline void Euler<T>::setOrder(typename Euler<T>::Order p)
- {
- set( p & 0x2000 ? Z : (p & 0x1000 ? Y : X), // initial axis
- !(p & 0x1), // static?
- !!(p & 0x100), // permutation even?
- !!(p & 0x10)); // initial repeats?
- }
- template<class T>
- void Euler<T>::set(typename Euler<T>::Axis axis,
- bool relative,
- bool parityEven,
- bool firstRepeats)
- {
- _initialAxis = axis;
- _frameStatic = !relative;
- _parityEven = parityEven;
- _initialRepeated = firstRepeats;
- }
- template<class T>
- const Euler<T>& Euler<T>::operator= (const Euler<T> &euler)
- {
- x = euler.x;
- y = euler.y;
- z = euler.z;
- _initialAxis = euler._initialAxis;
- _frameStatic = euler._frameStatic;
- _parityEven = euler._parityEven;
- _initialRepeated = euler._initialRepeated;
- return *this;
- }
- template<class T>
- const Euler<T>& Euler<T>::operator= (const Vec3<T> &v)
- {
- x = v.x;
- y = v.y;
- z = v.z;
- return *this;
- }
- template<class T>
- std::ostream& operator << (std::ostream &o, const Euler<T> &euler)
- {
- char a[3] = { 'X', 'Y', 'Z' };
- const char* r = euler.frameStatic() ? "" : "r";
- int i,j,k;
- euler.angleOrder(i,j,k);
- if ( euler.initialRepeated() ) k = i;
- return o << "("
- << euler.x << " "
- << euler.y << " "
- << euler.z << " "
- << a[i] << a[j] << a[k] << r << ")";
- }
- template <class T>
- float
- Euler<T>::angleMod (T angle)
- {
- const T pi = static_cast<T>(M_PI);
- angle = fmod(T (angle), T (2 * pi));
- if (angle < -pi) angle += 2 * pi;
- if (angle > +pi) angle -= 2 * pi;
- return angle;
- }
- template <class T>
- void
- Euler<T>::simpleXYZRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot)
- {
- Vec3<T> d = xyzRot - targetXyzRot;
- xyzRot[0] = targetXyzRot[0] + angleMod(d[0]);
- xyzRot[1] = targetXyzRot[1] + angleMod(d[1]);
- xyzRot[2] = targetXyzRot[2] + angleMod(d[2]);
- }
- template <class T>
- void
- Euler<T>::nearestRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot,
- Order order)
- {
- int i,j,k;
- Euler<T> e (0,0,0, order);
- e.angleOrder(i,j,k);
- simpleXYZRotation(xyzRot, targetXyzRot);
- Vec3<T> otherXyzRot;
- otherXyzRot[i] = M_PI+xyzRot[i];
- otherXyzRot[j] = M_PI-xyzRot[j];
- otherXyzRot[k] = M_PI+xyzRot[k];
- simpleXYZRotation(otherXyzRot, targetXyzRot);
-
- Vec3<T> d = xyzRot - targetXyzRot;
- Vec3<T> od = otherXyzRot - targetXyzRot;
- T dMag = d.dot(d);
- T odMag = od.dot(od);
- if (odMag < dMag)
- {
- xyzRot = otherXyzRot;
- }
- }
- template <class T>
- void
- Euler<T>::makeNear (const Euler<T> &target)
- {
- Vec3<T> xyzRot = toXYZVector();
- Vec3<T> targetXyz;
- if (order() != target.order())
- {
- Euler<T> targetSameOrder = Euler<T>(target, order());
- targetXyz = targetSameOrder.toXYZVector();
- }
- else
- {
- targetXyz = target.toXYZVector();
- }
- nearestRotation(xyzRot, targetXyz, order());
- setXYZVector(xyzRot);
- }
- #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
- #pragma warning(default:4244)
- #endif
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHEULER_H
|