1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2009-2014 DreamWorks Animation LLC.
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of DreamWorks Animation nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- //---------------------------------------------------
- //
- // class DwaCompressor -- Store lossy RGB data by quantizing
- // DCT components.
- //
- // First, we try and figure out what compression strategy to take
- // based in channel name. For RGB channels, we want a lossy method
- // described below. But, if we have alpha, we should do something
- // different (and probably using RLE). If we have depth, or velocity,
- // or something else, just fall back to ZIP. The rules for deciding
- // which strategy to use are setup in initializeDefaultChannelRules().
- // When writing a file, the relevant rules needed to decode are written
- // into the start of the data block, making a self-contained file.
- // If initializeDefaultChannelRules() doesn't quite suite your naming
- // conventions, you can adjust the rules without breaking decoder
- // compatability.
- //
- // If we're going to lossy compress R, G, or B channels, it's easier
- // to toss bits in a more perceptual uniform space. One could argue
- // at length as to what constitutes perceptually uniform, expecially
- // when storing either scene/input/focal plane referred and output referred
- // data.
- //
- // We'll compromise. For values <= 1, we use a traditional power function
- // (without any of that straight-line business at the bottom). For values > 1,
- // we want something more like a log function, since power functions blow
- // up. At 1, we want a smooth blend between the functions. So, we use a
- // piecewise function that does just that - see dwaLookups.cpp for
- // a little more detail.
- //
- // Also, if we find that we have R, G, and B channels from the same layer,
- // we can get a bit more compression efficiency by transforming to a Y'CbCr
- // space. We use the 709 transform, but with Cb,Cr = 0 for an input of
- // (0, 0, 0), instead of the traditional Cb,Cr = .5. Shifting the zero point
- // makes no sense with large range data. Transforms are done to from
- // the perceptual space data, not the linear-light space data (R'G'B' ->
- // (Y'CbCr, not RGB -> YCbCr).
- //
- // Next, we forward DCT the data. This is done with a floating
- // point DCT, as we don't really have control over the src range. The
- // resulting values are dropped to half-float precision.
- //
- // Now, we need to quantize. Quantization departs from the usual way
- // of dividing and rounding. Instead, we start with some floating
- // point "base-error" value. From this, we can derive quantization
- // error for each DCT component. Take the standard JPEG quantization
- // tables and normalize them by the smallest value. Then, multiply
- // the normalized quant tables by our base-error value. This gives
- // a range of errors for each DCT component.
- //
- // For each DCT component, we want to find a quantized value that
- // is within +- the per-component error. Pick the quantized value
- // that has the fewest bits set in its' binary representation.
- // Brute-forcing the search would make for extremly inefficient
- // compression. Fortunatly, we can precompute a table to assist
- // with this search.
- //
- // For each 16-bit float value, there are at most 15 other values with
- // fewer bits set. We can precompute these values in a compact form, since
- // many source values have far fewer that 15 possible quantized values.
- // Now, instead of searching the entire range +- the component error,
- // we can just search at most 15 quantization candidates. The search can
- // be accelerated a bit more by sorting the candidates by the
- // number of bits set, in increasing order. Then, the search can stop
- // once a candidate is found w/i the per-component quantization
- // error range.
- //
- // The quantization strategy has the side-benefit that there is no
- // de-quantization step upon decode, so we don't bother recording
- // the quantization table.
- //
- // Ok. So we now have quantized values. Time for entropy coding. We
- // can use either static Huffman or zlib/DEFLATE. The static Huffman
- // is more efficient at compacting data, but can have a greater
- // overhead, especially for smaller tile/strip sizes.
- //
- // There is some additional fun, like ZIP compressing the DC components
- // instead of Huffman/zlib, which helps make things slightly smaller.
- //
- // Compression level is controlled by setting an int/float/double attribute
- // on the header named "dwaCompressionLevel". This is a thinly veiled name for
- // the "base-error" value mentioned above. The "base-error" is just
- // dwaCompressionLevel / 100000. The default value of 45.0 is generally
- // pretty good at generating "visually lossless" values at reasonable
- // data rates. Setting dwaCompressionLevel to 0 should result in no additional
- // quantization at the quantization stage (though there may be
- // quantization in practice at the CSC/DCT steps). But if you really
- // want lossless compression, there are pleanty of other choices
- // of compressors ;)
- //
- // When dealing with FLOAT source buffers, we first quantize the source
- // to HALF and continue down as we would for HALF source.
- //
- //---------------------------------------------------
- #include "ImfDwaCompressor.h"
- #include "ImfDwaCompressorSimd.h"
- #include "ImfChannelList.h"
- #include "ImfStandardAttributes.h"
- #include "ImfHeader.h"
- #include "ImfHuf.h"
- #include "ImfInt64.h"
- #include "ImfIntAttribute.h"
- #include "ImfIO.h"
- #include "ImfMisc.h"
- #include "ImfNamespace.h"
- #include "ImfRle.h"
- #include "ImfSimd.h"
- #include "ImfSystemSpecific.h"
- #include "ImfXdr.h"
- #include "ImfZip.h"
- #include "ImathFun.h"
- #include "ImathBox.h"
- #include "ImathVec.h"
- #include "half.h"
- #include "halfLimits.h"
- #include "dwaLookups.h"
- #include <vector>
- #include <string>
- #include <cctype>
- #include <cassert>
- #include <algorithm>
- // Windows specific addition to prevent the indirect import of the redefined min/max macros
- #if defined _WIN32 || defined _WIN64
- #ifdef NOMINMAX
- #undef NOMINMAX
- #endif
- #define NOMINMAX
- #endif
- #include <zlib.h>
- OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
- namespace {
- //
- // Function pointer to dispatch to an approprate
- // convertFloatToHalf64_* impl, based on runtime cpu checking.
- // Should be initialized in DwaCompressor::initializeFuncs()
- //
- void (*convertFloatToHalf64)(unsigned short*, float*) =
- convertFloatToHalf64_scalar;
- //
- // Function pointer for dispatching a fromHalfZigZag_ impl
- //
-
- void (*fromHalfZigZag)(unsigned short*, float*) =
- fromHalfZigZag_scalar;
- //
- // Dispatch the inverse DCT on an 8x8 block, where the last
- // n rows can be all zeros. The n=0 case converts the full block.
- //
- void (*dctInverse8x8_0)(float*) = dctInverse8x8_scalar<0>;
- void (*dctInverse8x8_1)(float*) = dctInverse8x8_scalar<1>;
- void (*dctInverse8x8_2)(float*) = dctInverse8x8_scalar<2>;
- void (*dctInverse8x8_3)(float*) = dctInverse8x8_scalar<3>;
- void (*dctInverse8x8_4)(float*) = dctInverse8x8_scalar<4>;
- void (*dctInverse8x8_5)(float*) = dctInverse8x8_scalar<5>;
- void (*dctInverse8x8_6)(float*) = dctInverse8x8_scalar<6>;
- void (*dctInverse8x8_7)(float*) = dctInverse8x8_scalar<7>;
-
- } // namespace
- struct DwaCompressor::ChannelData
- {
- std::string name;
- CompressorScheme compression;
- int xSampling;
- int ySampling;
- PixelType type;
- bool pLinear;
- int width;
- int height;
- //
- // Incoming and outgoing data is scanline interleaved, and it's much
- // easier to operate on contiguous data. Assuming the planare unc
- // buffer is to hold RLE data, we need to rearrange to make bytes
- // adjacent.
- //
- char *planarUncBuffer;
- char *planarUncBufferEnd;
- char *planarUncRle[4];
- char *planarUncRleEnd[4];
- PixelType planarUncType;
- int planarUncSize;
- };
- struct DwaCompressor::CscChannelSet
- {
- int idx[3];
- };
- struct DwaCompressor::Classifier
- {
- Classifier (std::string suffix,
- CompressorScheme scheme,
- PixelType type,
- int cscIdx,
- bool caseInsensitive):
- _suffix(suffix),
- _scheme(scheme),
- _type(type),
- _cscIdx(cscIdx),
- _caseInsensitive(caseInsensitive)
- {
- if (caseInsensitive)
- std::transform(_suffix.begin(), _suffix.end(), _suffix.begin(), tolower);
- }
- Classifier (const char *&ptr, int size)
- {
- if (size <= 0)
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (truncated rule).");
-
- {
- char suffix[Name::SIZE];
- memset (suffix, 0, Name::SIZE);
- Xdr::read<CharPtrIO> (ptr, std::min(size, Name::SIZE-1), suffix);
- _suffix = std::string(suffix);
- }
- if (size < _suffix.length() + 1 + 2*Xdr::size<char>())
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (truncated rule).");
- char value;
- Xdr::read<CharPtrIO> (ptr, value);
- _cscIdx = (int)(value >> 4) - 1;
- if (_cscIdx < -1 || _cscIdx >= 3)
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (corrupt cscIdx rule).");
- _scheme = (CompressorScheme)((value >> 2) & 3);
- if (_scheme < 0 || _scheme >= NUM_COMPRESSOR_SCHEMES)
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (corrupt scheme rule).");
- _caseInsensitive = (value & 1 ? true : false);
- Xdr::read<CharPtrIO> (ptr, value);
- if (value < 0 || value >= NUM_PIXELTYPES)
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (corrupt rule).");
- _type = (PixelType)value;
- }
- bool match (const std::string &suffix, const PixelType type) const
- {
- if (_type != type) return false;
- if (_caseInsensitive)
- {
- std::string tmp(suffix);
- std::transform(tmp.begin(), tmp.end(), tmp.begin(), tolower);
- return tmp == _suffix;
- }
- return suffix == _suffix;
- }
- size_t size () const
- {
- // string length + \0
- size_t sizeBytes = _suffix.length() + 1;
- // 1 byte for scheme / cscIdx / caseInsensitive, and 1 byte for type
- sizeBytes += 2 * Xdr::size<char>();
- return sizeBytes;
- }
- void write (char *&ptr) const
- {
- Xdr::write<CharPtrIO> (ptr, _suffix.c_str());
- // Encode _cscIdx (-1-3) in the upper 4 bits,
- // _scheme (0-2) in the next 2 bits
- // _caseInsen in the bottom bit
- unsigned char value = 0;
- value |= ((unsigned char)(_cscIdx+1) & 15) << 4;
- value |= ((unsigned char)_scheme & 3) << 2;
- value |= (unsigned char)_caseInsensitive & 1;
- Xdr::write<CharPtrIO> (ptr, value);
- Xdr::write<CharPtrIO> (ptr, (unsigned char)_type);
- }
- std::string _suffix;
- CompressorScheme _scheme;
- PixelType _type;
- int _cscIdx;
- bool _caseInsensitive;
- };
- //
- // Base class for the LOSSY_DCT decoder classes
- //
- class DwaCompressor::LossyDctDecoderBase
- {
- public:
- LossyDctDecoderBase
- (char *packedAc,
- char *packedDc,
- const unsigned short *toLinear,
- int width,
- int height);
- virtual ~LossyDctDecoderBase ();
- void execute();
- //
- // These return number of items, not bytes. Each item
- // is an unsigned short
- //
- int numAcValuesEncoded() const { return _packedAcCount; }
- int numDcValuesEncoded() const { return _packedDcCount; }
- protected:
- //
- // Un-RLE the packed AC components into
- // a half buffer. The half block should
- // be the full 8x8 block (in zig-zag order
- // still), not the first AC component.
- //
- // currAcComp is advanced as bytes are decoded.
- //
- // This returns the index of the last non-zero
- // value in the buffer - with the index into zig zag
- // order data. If we return 0, we have DC only data.
- //
- int unRleAc (unsigned short *&currAcComp,
- unsigned short *halfZigBlock);
- //
- // if NATIVE and XDR are really the same values, we can
- // skip some processing and speed things along
- //
- bool _isNativeXdr;
- //
- // Counts of how many items have been packed into the
- // AC and DC buffers
- //
- int _packedAcCount;
- int _packedDcCount;
- //
- // AC and DC buffers to pack
- //
- char *_packedAc;
- char *_packedDc;
- //
- // half -> half LUT to transform from nonlinear to linear
- //
- const unsigned short *_toLinear;
- //
- // image dimensions
- //
- int _width;
- int _height;
- //
- // Pointers to the start of each scanlines, to be filled on decode
- // Generally, these will be filled by the subclasses.
- //
- std::vector< std::vector<char *> > _rowPtrs;
- //
- // The type of each data that _rowPtrs[i] is referring. Layout
- // is in the same order as _rowPtrs[].
- //
- std::vector<PixelType> _type;
- std::vector<SimdAlignedBuffer64f> _dctData;
- };
- //
- // Used to decode a single channel of LOSSY_DCT data.
- //
- class DwaCompressor::LossyDctDecoder: public LossyDctDecoderBase
- {
- public:
- //
- // toLinear is a half-float LUT to convert the encoded values
- // back to linear light. If you want to skip this step, pass
- // in NULL here.
- //
- LossyDctDecoder
- (std::vector<char *> &rowPtrs,
- char *packedAc,
- char *packedDc,
- const unsigned short *toLinear,
- int width,
- int height,
- PixelType type)
- :
- LossyDctDecoderBase(packedAc, packedDc, toLinear, width, height)
- {
- _rowPtrs.push_back(rowPtrs);
- _type.push_back(type);
- }
- virtual ~LossyDctDecoder () {}
- };
- //
- // Used to decode 3 channels of LOSSY_DCT data that
- // are grouped together and color space converted.
- //
- class DwaCompressor::LossyDctDecoderCsc: public LossyDctDecoderBase
- {
- public:
- //
- // toLinear is a half-float LUT to convert the encoded values
- // back to linear light. If you want to skip this step, pass
- // in NULL here.
- //
- LossyDctDecoderCsc
- (std::vector<char *> &rowPtrsR,
- std::vector<char *> &rowPtrsG,
- std::vector<char *> &rowPtrsB,
- char *packedAc,
- char *packedDc,
- const unsigned short *toLinear,
- int width,
- int height,
- PixelType typeR,
- PixelType typeG,
- PixelType typeB)
- :
- LossyDctDecoderBase(packedAc, packedDc, toLinear, width, height)
- {
- _rowPtrs.push_back(rowPtrsR);
- _rowPtrs.push_back(rowPtrsG);
- _rowPtrs.push_back(rowPtrsB);
- _type.push_back(typeR);
- _type.push_back(typeG);
- _type.push_back(typeB);
- }
- virtual ~LossyDctDecoderCsc () {}
- };
- //
- // Base class for encoding using the lossy DCT scheme
- //
- class DwaCompressor::LossyDctEncoderBase
- {
- public:
- LossyDctEncoderBase
- (float quantBaseError,
- char *packedAc,
- char *packedDc,
- const unsigned short *toNonlinear,
- int width,
- int height);
- virtual ~LossyDctEncoderBase ();
- void execute ();
- //
- // These return number of items, not bytes. Each item
- // is an unsigned short
- //
- int numAcValuesEncoded () const {return _numAcComp;}
- int numDcValuesEncoded () const {return _numDcComp;}
- protected:
- void toZigZag (half *dst, half *src);
- int countSetBits (unsigned short src);
- half quantize (half src, float errorTolerance);
- void rleAc (half *block, unsigned short *&acPtr);
- float _quantBaseError;
- int _width,
- _height;
- const unsigned short *_toNonlinear;
- int _numAcComp,
- _numDcComp;
- std::vector< std::vector<const char *> > _rowPtrs;
- std::vector<PixelType> _type;
- std::vector<SimdAlignedBuffer64f> _dctData;
- //
- // Pointers to the buffers where AC and DC
- // DCT components should be packed for
- // lossless compression downstream
- //
- char *_packedAc;
- char *_packedDc;
- //
- // Our "quantization tables" - the example JPEG tables,
- // normalized so that the smallest value in each is 1.0.
- // This gives us a relationship between error in DCT
- // components
- //
- float _quantTableY[64];
- float _quantTableCbCr[64];
- };
- //
- // Single channel lossy DCT encoder
- //
- class DwaCompressor::LossyDctEncoder: public LossyDctEncoderBase
- {
- public:
- LossyDctEncoder
- (float quantBaseError,
- std::vector<const char *> &rowPtrs,
- char *packedAc,
- char *packedDc,
- const unsigned short *toNonlinear,
- int width,
- int height,
- PixelType type)
- :
- LossyDctEncoderBase
- (quantBaseError, packedAc, packedDc, toNonlinear, width, height)
- {
- _rowPtrs.push_back(rowPtrs);
- _type.push_back(type);
- }
- virtual ~LossyDctEncoder () {}
- };
-
- //
- // RGB channel lossy DCT encoder
- //
- class DwaCompressor::LossyDctEncoderCsc: public LossyDctEncoderBase
- {
- public:
- LossyDctEncoderCsc
- (float quantBaseError,
- std::vector<const char *> &rowPtrsR,
- std::vector<const char *> &rowPtrsG,
- std::vector<const char *> &rowPtrsB,
- char *packedAc,
- char *packedDc,
- const unsigned short *toNonlinear,
- int width,
- int height,
- PixelType typeR,
- PixelType typeG,
- PixelType typeB)
- :
- LossyDctEncoderBase
- (quantBaseError, packedAc, packedDc, toNonlinear, width, height)
- {
- _type.push_back(typeR);
- _type.push_back(typeG);
- _type.push_back(typeB);
- _rowPtrs.push_back(rowPtrsR);
- _rowPtrs.push_back(rowPtrsG);
- _rowPtrs.push_back(rowPtrsB);
- }
- virtual ~LossyDctEncoderCsc () {}
- };
- // ==============================================================
- //
- // LossyDctDecoderBase
- //
- // --------------------------------------------------------------
- DwaCompressor::LossyDctDecoderBase::LossyDctDecoderBase
- (char *packedAc,
- char *packedDc,
- const unsigned short *toLinear,
- int width,
- int height)
- :
- _isNativeXdr(false),
- _packedAcCount(0),
- _packedDcCount(0),
- _packedAc(packedAc),
- _packedDc(packedDc),
- _toLinear(toLinear),
- _width(width),
- _height(height)
- {
- if (_toLinear == 0)
- _toLinear = get_dwaCompressorNoOp();
- _isNativeXdr = GLOBAL_SYSTEM_LITTLE_ENDIAN;
- }
- DwaCompressor::LossyDctDecoderBase::~LossyDctDecoderBase () {}
- void
- DwaCompressor::LossyDctDecoderBase::execute ()
- {
- int numComp = _rowPtrs.size();
- int lastNonZero = 0;
- int numBlocksX = (int) ceil ((float)_width / 8.0f);
- int numBlocksY = (int) ceil ((float)_height / 8.0f);
- int leftoverX = _width - (numBlocksX-1) * 8;
- int leftoverY = _height - (numBlocksY-1) * 8;
- int numFullBlocksX = (int)floor ((float)_width / 8.0f);
- unsigned short tmpShortNative = 0;
- unsigned short tmpShortXdr = 0;
- const char *tmpConstCharPtr = 0;
- unsigned short *currAcComp = (unsigned short *)_packedAc;
- std::vector<unsigned short *> currDcComp (_rowPtrs.size());
- std::vector<SimdAlignedBuffer64us> halfZigBlock (_rowPtrs.size());
- if (_type.size() != _rowPtrs.size())
- throw IEX_NAMESPACE::BaseExc ("Row pointers and types mismatch in count");
- if ((_rowPtrs.size() != 3) && (_rowPtrs.size() != 1))
- throw IEX_NAMESPACE::NoImplExc ("Only 1 and 3 channel encoding is supported");
- _dctData.resize(numComp);
- //
- // Allocate a temp aligned buffer to hold a rows worth of full
- // 8x8 half-float blocks
- //
- unsigned char *rowBlockHandle = new unsigned char
- [numComp * numBlocksX * 64 * sizeof(unsigned short) + _SSE_ALIGNMENT];
- unsigned short *rowBlock[3];
- rowBlock[0] = (unsigned short*)rowBlockHandle;
- for (int i = 0; i < _SSE_ALIGNMENT; ++i)
- {
- if (((size_t)(rowBlockHandle + i) & _SSE_ALIGNMENT_MASK) == 0)
- rowBlock[0] = (unsigned short *)(rowBlockHandle + i);
- }
- for (int comp = 1; comp < numComp; ++comp)
- rowBlock[comp] = rowBlock[comp - 1] + numBlocksX * 64;
-
- //
- // Pack DC components together by common plane, so we can get
- // a little more out of differencing them. We'll always have
- // one component per block, so we can computed offsets.
- //
- currDcComp[0] = (unsigned short *)_packedDc;
- for (unsigned int comp = 1; comp < numComp; ++comp)
- currDcComp[comp] = currDcComp[comp - 1] + numBlocksX * numBlocksY;
- for (int blocky = 0; blocky < numBlocksY; ++blocky)
- {
- int maxY = 8;
- if (blocky == numBlocksY-1)
- maxY = leftoverY;
- int maxX = 8;
- for (int blockx = 0; blockx < numBlocksX; ++blockx)
- {
- if (blockx == numBlocksX-1)
- maxX = leftoverX;
- //
- // If we can detect that the block is constant values
- // (all components only have DC values, and all AC is 0),
- // we can do everything only on 1 value, instead of all
- // 64.
- //
- // This won't really help for regular images, but it is
- // meant more for layers with large swaths of black
- //
- bool blockIsConstant = true;
- for (unsigned int comp = 0; comp < numComp; ++comp)
- {
- //
- // DC component is stored separately
- //
- #ifdef IMF_HAVE_SSE2
- {
- __m128i *dst = (__m128i*)halfZigBlock[comp]._buffer;
- dst[7] = _mm_setzero_si128();
- dst[6] = _mm_setzero_si128();
- dst[5] = _mm_setzero_si128();
- dst[4] = _mm_setzero_si128();
- dst[3] = _mm_setzero_si128();
- dst[2] = _mm_setzero_si128();
- dst[1] = _mm_setzero_si128();
- dst[0] = _mm_insert_epi16
- (_mm_setzero_si128(), *currDcComp[comp]++, 0);
- }
- #else /* IMF_HAVE_SSE2 */
- memset (halfZigBlock[comp]._buffer, 0, 64 * 2);
- halfZigBlock[comp]._buffer[0] = *currDcComp[comp]++;
- #endif /* IMF_HAVE_SSE2 */
- _packedDcCount++;
-
- //
- // UnRLE the AC. This will modify currAcComp
- //
- lastNonZero = unRleAc (currAcComp, halfZigBlock[comp]._buffer);
- //
- // Convert from XDR to NATIVE
- //
- if (!_isNativeXdr)
- {
- for (int i = 0; i < 64; ++i)
- {
- tmpShortXdr = halfZigBlock[comp]._buffer[i];
- tmpConstCharPtr = (const char *)&tmpShortXdr;
- Xdr::read<CharPtrIO> (tmpConstCharPtr, tmpShortNative);
- halfZigBlock[comp]._buffer[i] = tmpShortNative;
- }
- }
- if (lastNonZero == 0)
- {
- //
- // DC only case - AC components are all 0
- //
- half h;
- h.setBits (halfZigBlock[comp]._buffer[0]);
- _dctData[comp]._buffer[0] = (float)h;
- dctInverse8x8DcOnly (_dctData[comp]._buffer);
- }
- else
- {
- //
- // We have some AC components that are non-zero.
- // Can't use the 'constant block' optimization
- //
- blockIsConstant = false;
- //
- // Un-Zig zag
- //
- (*fromHalfZigZag)
- (halfZigBlock[comp]._buffer, _dctData[comp]._buffer);
- //
- // Zig-Zag indices in normal layout are as follows:
- //
- // 0 1 5 6 14 15 27 28
- // 2 4 7 13 16 26 29 42
- // 3 8 12 17 25 30 41 43
- // 9 11 18 24 31 40 44 53
- // 10 19 23 32 39 45 52 54
- // 20 22 33 38 46 51 55 60
- // 21 34 37 47 50 56 59 61
- // 35 36 48 49 57 58 62 63
- //
- // If lastNonZero is less than the first item on
- // each row, we know that the whole row is zero and
- // can be skipped in the row-oriented part of the
- // iDCT.
- //
- // The unrolled logic here is:
- //
- // if lastNonZero < rowStartIdx[i],
- // zeroedRows = rowsEmpty[i]
- //
- // where:
- //
- // const int rowStartIdx[] = {2, 3, 9, 10, 20, 21, 35};
- // const int rowsEmpty[] = {7, 6, 5, 4, 3, 2, 1};
- //
- if (lastNonZero < 2)
- dctInverse8x8_7(_dctData[comp]._buffer);
- else if (lastNonZero < 3)
- dctInverse8x8_6(_dctData[comp]._buffer);
- else if (lastNonZero < 9)
- dctInverse8x8_5(_dctData[comp]._buffer);
- else if (lastNonZero < 10)
- dctInverse8x8_4(_dctData[comp]._buffer);
- else if (lastNonZero < 20)
- dctInverse8x8_3(_dctData[comp]._buffer);
- else if (lastNonZero < 21)
- dctInverse8x8_2(_dctData[comp]._buffer);
- else if (lastNonZero < 35)
- dctInverse8x8_1(_dctData[comp]._buffer);
- else
- dctInverse8x8_0(_dctData[comp]._buffer);
- }
- }
- //
- // Perform the CSC
- //
- if (numComp == 3)
- {
- if (!blockIsConstant)
- {
- csc709Inverse64 (_dctData[0]._buffer,
- _dctData[1]._buffer,
- _dctData[2]._buffer);
- }
- else
- {
- csc709Inverse (_dctData[0]._buffer[0],
- _dctData[1]._buffer[0],
- _dctData[2]._buffer[0]);
- }
- }
- //
- // Float -> Half conversion.
- //
- // If the block has a constant value, just convert the first pixel.
- //
- for (unsigned int comp = 0; comp < numComp; ++comp)
- {
- if (!blockIsConstant)
- {
- (*convertFloatToHalf64)
- (&rowBlock[comp][blockx*64], _dctData[comp]._buffer);
- }
- else
- {
- #ifdef IMF_HAVE_SSE2
- __m128i *dst = (__m128i*)&rowBlock[comp][blockx*64];
- dst[0] = _mm_set1_epi16
- (((half)_dctData[comp]._buffer[0]).bits());
- dst[1] = dst[0];
- dst[2] = dst[0];
- dst[3] = dst[0];
- dst[4] = dst[0];
- dst[5] = dst[0];
- dst[6] = dst[0];
- dst[7] = dst[0];
- #else /* IMF_HAVE_SSE2 */
- unsigned short *dst = &rowBlock[comp][blockx*64];
- dst[0] = ((half)_dctData[comp]._buffer[0]).bits();
- for (int i = 1; i < 64; ++i)
- {
- dst[i] = dst[0];
- }
- #endif /* IMF_HAVE_SSE2 */
- } // blockIsConstant
- } // comp
- } // blockx
- //
- // At this point, we have half-float nonlinear value blocked
- // in rowBlock[][]. We need to unblock the data, transfer
- // back to linear, and write the results in the _rowPtrs[].
- //
- // There is a fast-path for aligned rows, which helps
- // things a little. Since this fast path is only valid
- // for full 8-element wide blocks, the partial x blocks
- // are broken into a separate loop below.
- //
- // At the moment, the fast path requires:
- // * sse support
- // * aligned row pointers
- // * full 8-element wide blocks
- //
- for (int comp = 0; comp < numComp; ++comp)
- {
- //
- // Test if we can use the fast path
- //
- #ifdef IMF_HAVE_SSE2
- bool fastPath = true;
- for (int y = 8 * blocky; y < 8 * blocky + maxY; ++y)
- {
- if ((size_t)_rowPtrs[comp][y] & _SSE_ALIGNMENT_MASK)
- fastPath = false;
- }
- if (fastPath)
- {
- //
- // Handle all the full X blocks, in a fast path with sse2 and
- // aligned row pointers
- //
- for (int y=8*blocky; y<8*blocky+maxY; ++y)
- {
- __m128i *dst = (__m128i *)_rowPtrs[comp][y];
- __m128i *src = (__m128i *)&rowBlock[comp][(y & 0x7) * 8];
- for (int blockx = 0; blockx < numFullBlocksX; ++blockx)
- {
- //
- // These may need some twiddling.
- // Run with multiples of 8
- //
- _mm_prefetch ((char *)(src + 16), _MM_HINT_NTA);
- unsigned short i0 = _mm_extract_epi16 (*src, 0);
- unsigned short i1 = _mm_extract_epi16 (*src, 1);
- unsigned short i2 = _mm_extract_epi16 (*src, 2);
- unsigned short i3 = _mm_extract_epi16 (*src, 3);
- unsigned short i4 = _mm_extract_epi16 (*src, 4);
- unsigned short i5 = _mm_extract_epi16 (*src, 5);
- unsigned short i6 = _mm_extract_epi16 (*src, 6);
- unsigned short i7 = _mm_extract_epi16 (*src, 7);
- i0 = _toLinear[i0];
- i1 = _toLinear[i1];
- i2 = _toLinear[i2];
- i3 = _toLinear[i3];
- i4 = _toLinear[i4];
- i5 = _toLinear[i5];
- i6 = _toLinear[i6];
- i7 = _toLinear[i7];
- *dst = _mm_insert_epi16 (_mm_setzero_si128(), i0, 0);
- *dst = _mm_insert_epi16 (*dst, i1, 1);
- *dst = _mm_insert_epi16 (*dst, i2, 2);
- *dst = _mm_insert_epi16 (*dst, i3, 3);
- *dst = _mm_insert_epi16 (*dst, i4, 4);
- *dst = _mm_insert_epi16 (*dst, i5, 5);
- *dst = _mm_insert_epi16 (*dst, i6, 6);
- *dst = _mm_insert_epi16 (*dst, i7, 7);
- src += 8;
- dst++;
- }
- }
- }
- else
- {
- #endif /* IMF_HAVE_SSE2 */
- //
- // Basic scalar kinda slow path for handling the full X blocks
- //
- for (int y = 8 * blocky; y < 8 * blocky + maxY; ++y)
- {
- unsigned short *dst = (unsigned short *)_rowPtrs[comp][y];
- for (int blockx = 0; blockx < numFullBlocksX; ++blockx)
- {
- unsigned short *src =
- &rowBlock[comp][blockx * 64 + ((y & 0x7) * 8)];
- dst[0] = _toLinear[src[0]];
- dst[1] = _toLinear[src[1]];
- dst[2] = _toLinear[src[2]];
- dst[3] = _toLinear[src[3]];
- dst[4] = _toLinear[src[4]];
- dst[5] = _toLinear[src[5]];
- dst[6] = _toLinear[src[6]];
- dst[7] = _toLinear[src[7]];
- dst += 8;
- }
- }
- #ifdef IMF_HAVE_SSE2
- }
- #endif /* IMF_HAVE_SSE2 */
- //
- // If we have partial X blocks, deal with all those now
- // Since this should be minimal work, there currently
- // is only one path that should work for everyone.
- //
- if (numFullBlocksX != numBlocksX)
- {
- for (int y = 8 * blocky; y < 8 * blocky + maxY; ++y)
- {
- unsigned short *src = (unsigned short *)
- &rowBlock[comp][numFullBlocksX * 64 + ((y & 0x7) * 8)];
- unsigned short *dst = (unsigned short *)_rowPtrs[comp][y];
- dst += 8 * numFullBlocksX;
- for (int x = 0; x < maxX; ++x)
- {
- *dst++ = _toLinear[*src++];
- }
- }
- }
- } // comp
- } // blocky
- //
- // Walk over all the channels that are of type FLOAT.
- // Convert from HALF XDR back to FLOAT XDR.
- //
- for (unsigned int chan = 0; chan < numComp; ++chan)
- {
- if (_type[chan] != FLOAT)
- continue;
- std::vector<unsigned short> halfXdr (_width);
- for (int y=0; y<_height; ++y)
- {
- char *floatXdrPtr = _rowPtrs[chan][y];
- memcpy(&halfXdr[0], floatXdrPtr, _width*sizeof(unsigned short));
- const char *halfXdrPtr = (const char *)(&halfXdr[0]);
- for (int x=0; x<_width; ++x)
- {
- half tmpHalf;
- Xdr::read<CharPtrIO> (halfXdrPtr, tmpHalf);
- Xdr::write<CharPtrIO> (floatXdrPtr, (float)tmpHalf);
- //
- // Xdr::write and Xdr::read will advance the ptrs
- //
- }
- }
- }
- delete[] rowBlockHandle;
- }
- //
- // Un-RLE the packed AC components into
- // a half buffer. The half block should
- // be the full 8x8 block (in zig-zag order
- // still), not the first AC component.
- //
- // currAcComp is advanced as bytes are decoded.
- //
- // This returns the index of the last non-zero
- // value in the buffer - with the index into zig zag
- // order data. If we return 0, we have DC only data.
- //
- // This is assuminging that halfZigBlock is zero'ed
- // prior to calling
- //
- int
- DwaCompressor::LossyDctDecoderBase::unRleAc
- (unsigned short *&currAcComp,
- unsigned short *halfZigBlock)
- {
- //
- // Un-RLE the RLE'd blocks. If we find an item whose
- // high byte is 0xff, then insert the number of 0's
- // as indicated by the low byte.
- //
- // Otherwise, just copy the number verbaitm.
- //
- int lastNonZero = 0;
- int dctComp = 1;
- //
- // Start with a zero'ed block, so we don't have to
- // write when we hit a run symbol
- //
- while (dctComp < 64)
- {
- if (*currAcComp == 0xff00)
- {
- //
- // End of block
- //
- dctComp = 64;
- }
- else if ((*currAcComp) >> 8 == 0xff)
- {
- //
- // Run detected! Insert 0's.
- //
- // Since the block has been zeroed, just advance the ptr
- //
- dctComp += (*currAcComp) & 0xff;
- }
- else
- {
- //
- // Not a run, just copy over the value
- //
- lastNonZero = dctComp;
- halfZigBlock[dctComp] = *currAcComp;
- dctComp++;
- }
- _packedAcCount++;
- currAcComp++;
- }
- return lastNonZero;
- }
- // ==============================================================
- //
- // LossyDctEncoderBase
- //
- // --------------------------------------------------------------
- DwaCompressor::LossyDctEncoderBase::LossyDctEncoderBase
- (float quantBaseError,
- char *packedAc,
- char *packedDc,
- const unsigned short *toNonlinear,
- int width,
- int height)
- :
- _quantBaseError(quantBaseError),
- _width(width),
- _height(height),
- _toNonlinear(toNonlinear),
- _numAcComp(0),
- _numDcComp(0),
- _packedAc(packedAc),
- _packedDc(packedDc)
- {
- //
- // Here, we take the generic JPEG quantization tables and
- // normalize them by the smallest component in each table.
- // This gives us a relationship amongst the DCT components,
- // in terms of how sensitive each component is to
- // error.
- //
- // A higher normalized value means we can quantize more,
- // and a small normalized value means we can quantize less.
- //
- // Eventually, we will want an acceptable quantization
- // error range for each component. We find this by
- // multiplying some user-specified level (_quantBaseError)
- // by the normalized table (_quantTableY, _quantTableCbCr) to
- // find the acceptable quantization error range.
- //
- // The quantization table is not needed for decoding, and
- // is not transmitted. So, if you want to get really fancy,
- // you could derive some content-dependent quantization
- // table, and the decoder would not need to be changed. But,
- // for now, we'll just use statice quantization tables.
- //
- int jpegQuantTableY[] =
- {
- 16, 11, 10, 16, 24, 40, 51, 61,
- 12, 12, 14, 19, 26, 58, 60, 55,
- 14, 13, 16, 24, 40, 57, 69, 56,
- 14, 17, 22, 29, 51, 87, 80, 62,
- 18, 22, 37, 56, 68, 109, 103, 77,
- 24, 35, 55, 64, 81, 104, 113, 92,
- 49, 64, 78, 87, 103, 121, 120, 101,
- 72, 92, 95, 98, 112, 100, 103, 99
- };
- int jpegQuantTableYMin = 10;
- int jpegQuantTableCbCr[] =
- {
- 17, 18, 24, 47, 99, 99, 99, 99,
- 18, 21, 26, 66, 99, 99, 99, 99,
- 24, 26, 56, 99, 99, 99, 99, 99,
- 47, 66, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99
- };
- int jpegQuantTableCbCrMin = 17;
- for (int idx = 0; idx < 64; ++idx)
- {
- _quantTableY[idx] = static_cast<float> (jpegQuantTableY[idx]) /
- static_cast<float> (jpegQuantTableYMin);
- _quantTableCbCr[idx] = static_cast<float> (jpegQuantTableCbCr[idx]) /
- static_cast<float> (jpegQuantTableCbCrMin);
- }
-
- if (_quantBaseError < 0)
- quantBaseError = 0;
- }
- DwaCompressor::LossyDctEncoderBase::~LossyDctEncoderBase ()
- {
- }
- //
- // Given three channels of source data, encoding by first applying
- // a color space conversion to a YCbCr space. Otherwise, if we only
- // have one channel, just encode it as is.
- //
- // Other numbers of channels are somewhat unexpected at this point,
- // and will throw an exception.
- //
- void
- DwaCompressor::LossyDctEncoderBase::execute ()
- {
- int numBlocksX = (int)ceil ((float)_width / 8.0f);
- int numBlocksY = (int)ceil ((float)_height/ 8.0f);
- half halfZigCoef[64];
- half halfCoef[64];
- std::vector<unsigned short *> currDcComp (_rowPtrs.size());
- unsigned short *currAcComp = (unsigned short *)_packedAc;
- _dctData.resize (_rowPtrs.size());
- _numAcComp = 0;
- _numDcComp = 0;
-
- assert (_type.size() == _rowPtrs.size());
- assert ((_rowPtrs.size() == 3) || (_rowPtrs.size() == 1));
- //
- // Allocate a temp half buffer to quantize into for
- // any FLOAT source channels.
- //
- int tmpHalfBufferElements = 0;
- for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
- if (_type[chan] == FLOAT)
- tmpHalfBufferElements += _width * _height;
- std::vector<unsigned short> tmpHalfBuffer (tmpHalfBufferElements);
- char *tmpHalfBufferPtr = 0;
- if (tmpHalfBufferElements)
- tmpHalfBufferPtr = (char *)&tmpHalfBuffer[0];
- //
- // Run over all the float scanlines, quantizing,
- // and re-assigning _rowPtr[y]. We need to translate
- // FLOAT XDR to HALF XDR.
- //
- for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
- {
- if (_type[chan] != FLOAT)
- continue;
-
- for (int y = 0; y < _height; ++y)
- {
- float src = 0;
- const char *srcXdr = _rowPtrs[chan][y];
- char *dstXdr = tmpHalfBufferPtr;
-
- for (int x = 0; x < _width; ++x)
- {
- Xdr::read<CharPtrIO> (srcXdr, src);
- //
- // Clamp to half ranges, instead of just casting. This
- // avoids introducing Infs which end up getting zeroed later
- //
- src = std::max (
- std::min ((float) std::numeric_limits<half>::max(), src),
- (float)-std::numeric_limits<half>::max());
- Xdr::write<CharPtrIO> (dstXdr, ((half)src).bits());
- //
- // Xdr::read and Xdr::write will advance the ptr
- //
- }
- _rowPtrs[chan][y] = (const char *)tmpHalfBufferPtr;
- tmpHalfBufferPtr += _width * sizeof (unsigned short);
- }
- }
- //
- // Pack DC components together by common plane, so we can get
- // a little more out of differencing them. We'll always have
- // one component per block, so we can computed offsets.
- //
- currDcComp[0] = (unsigned short *)_packedDc;
- for (unsigned int chan = 1; chan < _rowPtrs.size(); ++chan)
- currDcComp[chan] = currDcComp[chan-1] + numBlocksX * numBlocksY;
- for (int blocky = 0; blocky < numBlocksY; ++blocky)
- {
- for (int blockx = 0; blockx < numBlocksX; ++blockx)
- {
- half h;
- unsigned short tmpShortXdr, tmpShortNative;
- char *tmpCharPtr;
- for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
- {
- //
- // Break the source into 8x8 blocks. If we don't
- // fit at the edges, mirror.
- //
- // Also, convert from linear to nonlinear representation.
- // Our source is assumed to be XDR, and we need to convert
- // to NATIVE prior to converting to float.
- //
- // If we're converting linear -> nonlinear, assume that the
- // XDR -> NATIVE conversion is built into the lookup. Otherwise,
- // we'll need to explicitly do it.
- //
- for (int y = 0; y < 8; ++y)
- {
- for (int x = 0; x < 8; ++x)
- {
- int vx = 8 * blockx + x;
- int vy = 8 * blocky + y;
- if (vx >= _width)
- vx = _width - (vx - (_width - 1));
-
- if (vx < 0) vx = _width-1;
- if (vy >=_height)
- vy = _height - (vy - (_height - 1));
- if (vy < 0) vy = _height-1;
-
- tmpShortXdr =
- ((const unsigned short *)(_rowPtrs[chan])[vy])[vx];
- if (_toNonlinear)
- {
- h.setBits (_toNonlinear[tmpShortXdr]);
- }
- else
- {
- const char *tmpConstCharPtr =
- (const char *)(&tmpShortXdr);
- Xdr::read<CharPtrIO>
- (tmpConstCharPtr, tmpShortNative);
- h.setBits(tmpShortNative);
- }
- _dctData[chan]._buffer[y * 8 + x] = (float)h;
- } // x
- } // y
- } // chan
- //
- // Color space conversion
- //
- if (_rowPtrs.size() == 3)
- {
- csc709Forward64 (_dctData[0]._buffer,
- _dctData[1]._buffer,
- _dctData[2]._buffer);
- }
- for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
- {
- //
- // Forward DCT
- //
- dctForward8x8(_dctData[chan]._buffer);
- //
- // Quantize to half, and zigzag
- //
- if (chan == 0)
- {
- for (int i = 0; i < 64; ++i)
- {
- halfCoef[i] =
- quantize ((half)_dctData[chan]._buffer[i],
- _quantBaseError*_quantTableY[i]);
- }
- }
- else
- {
- for (int i = 0; i < 64; ++i)
- {
- halfCoef[i] =
- quantize ((half)_dctData[chan]._buffer[i],
- _quantBaseError*_quantTableCbCr[i]);
- }
- }
- toZigZag (halfZigCoef, halfCoef);
-
- //
- // Convert from NATIVE back to XDR, before we write out
- //
- for (int i = 0; i < 64; ++i)
- {
- tmpCharPtr = (char *)&tmpShortXdr;
- Xdr::write<CharPtrIO>(tmpCharPtr, halfZigCoef[i].bits());
- halfZigCoef[i].setBits(tmpShortXdr);
- }
- //
- // Save the DC component separately, to be compressed on
- // its own.
- //
- *currDcComp[chan]++ = halfZigCoef[0].bits();
- _numDcComp++;
-
- //
- // Then RLE the AC components (which will record the count
- // of the resulting number of items)
- //
- rleAc (halfZigCoef, currAcComp);
- } // chan
- } // blockx
- } // blocky
- }
- //
- // Reorder from zig-zag order to normal ordering
- //
- void
- DwaCompressor::LossyDctEncoderBase::toZigZag (half *dst, half *src)
- {
- const int remap[] =
- {
- 0,
- 1, 8,
- 16, 9, 2,
- 3, 10, 17, 24,
- 32, 25, 18, 11, 4,
- 5, 12, 19, 26, 33, 40,
- 48, 41, 34, 27, 20, 13, 6,
- 7, 14, 21, 28, 35, 42, 49, 56,
- 57, 50, 43, 36, 29, 22, 15,
- 23, 30, 37, 44, 51, 58,
- 59, 52, 45, 38, 31,
- 39, 46, 53, 60,
- 61, 54, 47,
- 55, 62,
- 63
- };
- for (int i=0; i<64; ++i)
- dst[i] = src[remap[i]];
- }
- //
- // Precomputing the bit count runs faster than using
- // the builtin instruction, at least in one case..
- //
- // Precomputing 8-bits is no slower than 16-bits,
- // and saves a fair bit of overhead..
- //
- int
- DwaCompressor::LossyDctEncoderBase::countSetBits (unsigned short src)
- {
- static const unsigned short numBitsSet[256] =
- {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
- };
- return numBitsSet[src & 0xff] + numBitsSet[src >> 8];
- }
- //
- // Take a DCT coefficient, as well as an acceptable error. Search
- // nearby values within the error tolerance, that have fewer
- // bits set.
- //
- // The list of candidates has been pre-computed and sorted
- // in order of increasing numbers of bits set. This way, we
- // can stop searching as soon as we find a candidate that
- // is within the error tolerance.
- //
- half
- DwaCompressor::LossyDctEncoderBase::quantize (half src, float errorTolerance)
- {
- half tmp;
- float srcFloat = (float)src;
- int numSetBits = countSetBits(src.bits());
- const unsigned short *closest = get_dwaClosest(src.bits());
- for (int targetNumSetBits = numSetBits - 1;
- targetNumSetBits >= 0;
- --targetNumSetBits)
- {
- tmp.setBits (*closest);
- if (fabs ((float)tmp - srcFloat) < errorTolerance)
- return tmp;
- closest++;
- }
- return src;
- }
- //
- // RLE the zig-zag of the AC components + copy over
- // into another tmp buffer
- //
- // Try to do a simple RLE scheme to reduce run's of 0's. This
- // differs from the jpeg EOB case, since EOB just indicates that
- // the rest of the block is zero. In our case, we have lots of
- // NaN symbols, which shouldn't be allowed to occur in DCT
- // coefficents - so we'll use them for encoding runs.
- //
- // If the high byte is 0xff, then we have a run of 0's, of length
- // given by the low byte. For example, 0xff03 would be a run
- // of 3 0's, starting at the current location.
- //
- // block is our block of 64 coefficients
- // acPtr a pointer to back the RLE'd values into.
- //
- // This will advance the counter, _numAcComp.
- //
- void
- DwaCompressor::LossyDctEncoderBase::rleAc
- (half *block,
- unsigned short *&acPtr)
- {
- int dctComp = 1;
- unsigned short rleSymbol = 0x0;
- while (dctComp < 64)
- {
- int runLen = 1;
-
- //
- // If we don't have a 0, output verbatim
- //
- if (block[dctComp].bits() != rleSymbol)
- {
- *acPtr++ = block[dctComp].bits();
- _numAcComp++;
- dctComp += runLen;
- continue;
- }
- //
- // We're sitting on a 0, so see how big the run is.
- //
- while ((dctComp+runLen < 64) &&
- (block[dctComp+runLen].bits() == rleSymbol))
- {
- runLen++;
- }
- //
- // If the run len is too small, just output verbatim
- // otherwise output our run token
- //
- // Originally, we wouldn't have a separate symbol for
- // "end of block". But in some experimentation, it looks
- // like using 0xff00 for "end of block" can save a bit
- // of space.
- //
- if (runLen == 1)
- {
- runLen = 1;
- *acPtr++ = block[dctComp].bits();
- _numAcComp++;
- //
- // Using 0xff00 for "end of block"
- //
- }
- else if (runLen + dctComp == 64)
- {
- //
- // Signal EOB
- //
- *acPtr++ = 0xff00;
- _numAcComp++;
- }
- else
- {
- //
- // Signal normal run
- //
- *acPtr++ = 0xff00 | runLen;
- _numAcComp++;
- }
- //
- // Advance by runLen
- //
- dctComp += runLen;
- }
- }
- // ==============================================================
- //
- // DwaCompressor
- //
- // --------------------------------------------------------------
- //
- // DwaCompressor()
- //
- DwaCompressor::DwaCompressor
- (const Header &hdr,
- int maxScanLineSize,
- int numScanLines,
- AcCompression acCompression)
- :
- Compressor(hdr),
- _acCompression(acCompression),
- _maxScanLineSize(maxScanLineSize),
- _numScanLines(numScanLines),
- _channels(hdr.channels()),
- _packedAcBuffer(0),
- _packedAcBufferSize(0),
- _packedDcBuffer(0),
- _packedDcBufferSize(0),
- _rleBuffer(0),
- _rleBufferSize(0),
- _outBuffer(0),
- _outBufferSize(0),
- _zip(0),
- _dwaCompressionLevel(45.0)
- {
- _min[0] = hdr.dataWindow().min.x;
- _min[1] = hdr.dataWindow().min.y;
- _max[0] = hdr.dataWindow().max.x;
- _max[1] = hdr.dataWindow().max.y;
- for (int i=0; i < NUM_COMPRESSOR_SCHEMES; ++i)
- {
- _planarUncBuffer[i] = 0;
- _planarUncBufferSize[i] = 0;
- }
-
- //
- // Check the header for a quality attribute
- //
- if (hasDwaCompressionLevel (hdr))
- _dwaCompressionLevel = dwaCompressionLevel (hdr);
- }
- DwaCompressor::~DwaCompressor()
- {
- delete[] _packedAcBuffer;
- delete[] _packedDcBuffer;
- delete[] _rleBuffer;
- delete[] _outBuffer;
- delete _zip;
- for (int i=0; i<NUM_COMPRESSOR_SCHEMES; ++i)
- delete[] _planarUncBuffer[i];
- }
- int
- DwaCompressor::numScanLines() const
- {
- return _numScanLines;
- }
- OPENEXR_IMF_NAMESPACE::Compressor::Format
- DwaCompressor::format() const
- {
- if (GLOBAL_SYSTEM_LITTLE_ENDIAN)
- return NATIVE;
- else
- return XDR;
- }
- int
- DwaCompressor::compress
- (const char *inPtr,
- int inSize,
- int minY,
- const char *&outPtr)
- {
- return compress
- (inPtr,
- inSize,
- IMATH_NAMESPACE::Box2i (IMATH_NAMESPACE::V2i (_min[0], minY),
- IMATH_NAMESPACE::V2i (_max[0], minY + numScanLines() - 1)),
- outPtr);
- }
- int
- DwaCompressor::compressTile
- (const char *inPtr,
- int inSize,
- IMATH_NAMESPACE::Box2i range,
- const char *&outPtr)
- {
- return compress (inPtr, inSize, range, outPtr);
- }
- int
- DwaCompressor::compress
- (const char *inPtr,
- int inSize,
- IMATH_NAMESPACE::Box2i range,
- const char *&outPtr)
- {
- const char *inDataPtr = inPtr;
- char *packedAcEnd = 0;
- char *packedDcEnd = 0;
- int fileVersion = 2; // Starting with 2, we write the channel
- // classification rules into the file
- if (fileVersion < 2)
- initializeLegacyChannelRules();
- else
- initializeDefaultChannelRules();
- size_t outBufferSize = 0;
- initializeBuffers(outBufferSize);
- unsigned short channelRuleSize = 0;
- std::vector<Classifier> channelRules;
- if (fileVersion >= 2)
- {
- relevantChannelRules(channelRules);
- channelRuleSize = Xdr::size<unsigned short>();
- for (size_t i = 0; i < channelRules.size(); ++i)
- channelRuleSize += channelRules[i].size();
- }
- //
- // Remember to allocate _outBuffer, if we haven't done so already.
- //
- outBufferSize += channelRuleSize;
- if (outBufferSize > _outBufferSize)
- {
- _outBufferSize = outBufferSize;
- if (_outBuffer != 0)
- delete[] _outBuffer;
- _outBuffer = new char[outBufferSize];
- }
- char *outDataPtr = &_outBuffer[NUM_SIZES_SINGLE * sizeof(OPENEXR_IMF_NAMESPACE::Int64) +
- channelRuleSize];
- //
- // We might not be dealing with any color data, in which
- // case the AC buffer size will be 0, and deferencing
- // a vector will not be a good thing to do.
- //
- if (_packedAcBuffer)
- packedAcEnd = _packedAcBuffer;
- if (_packedDcBuffer)
- packedDcEnd = _packedDcBuffer;
- #define OBIDX(x) (Int64 *)&_outBuffer[x * sizeof (Int64)]
- Int64 *version = OBIDX (VERSION);
- Int64 *unknownUncompressedSize = OBIDX (UNKNOWN_UNCOMPRESSED_SIZE);
- Int64 *unknownCompressedSize = OBIDX (UNKNOWN_COMPRESSED_SIZE);
- Int64 *acCompressedSize = OBIDX (AC_COMPRESSED_SIZE);
- Int64 *dcCompressedSize = OBIDX (DC_COMPRESSED_SIZE);
- Int64 *rleCompressedSize = OBIDX (RLE_COMPRESSED_SIZE);
- Int64 *rleUncompressedSize = OBIDX (RLE_UNCOMPRESSED_SIZE);
- Int64 *rleRawSize = OBIDX (RLE_RAW_SIZE);
- Int64 *totalAcUncompressedCount = OBIDX (AC_UNCOMPRESSED_COUNT);
- Int64 *totalDcUncompressedCount = OBIDX (DC_UNCOMPRESSED_COUNT);
- Int64 *acCompression = OBIDX (AC_COMPRESSION);
- int minX = range.min.x;
- int maxX = std::min(range.max.x, _max[0]);
- int minY = range.min.y;
- int maxY = std::min(range.max.y, _max[1]);
- //
- // Zero all the numbers in the chunk header
- //
- memset (_outBuffer, 0, NUM_SIZES_SINGLE * sizeof (Int64));
- //
- // Setup the AC compression strategy and the version in the data block,
- // then write the relevant channel classification rules if needed
- //
- *version = fileVersion;
- *acCompression = _acCompression;
- setupChannelData (minX, minY, maxX, maxY);
- if (fileVersion >= 2)
- {
- char *writePtr = &_outBuffer[NUM_SIZES_SINGLE * sizeof(OPENEXR_IMF_NAMESPACE::Int64)];
- Xdr::write<CharPtrIO> (writePtr, channelRuleSize);
-
- for (size_t i = 0; i < channelRules.size(); ++i)
- channelRules[i].write(writePtr);
- }
- //
- // Determine the start of each row in the input buffer
- // Channels are interleaved by scanline
- //
- std::vector<bool> encodedChannels (_channelData.size());
- std::vector< std::vector<const char *> > rowPtrs (_channelData.size());
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- encodedChannels[chan] = false;
- inDataPtr = inPtr;
- for (int y = minY; y <= maxY; ++y)
- {
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- {
- ChannelData *cd = &_channelData[chan];
- if (IMATH_NAMESPACE::modp(y, cd->ySampling) != 0)
- continue;
- rowPtrs[chan].push_back(inDataPtr);
- inDataPtr += cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type);
- }
- }
- inDataPtr = inPtr;
- //
- // Make a pass over all our CSC sets and try to encode them first
- //
- for (unsigned int csc = 0; csc < _cscSets.size(); ++csc)
- {
- LossyDctEncoderCsc encoder
- (_dwaCompressionLevel / 100000.f,
- rowPtrs[_cscSets[csc].idx[0]],
- rowPtrs[_cscSets[csc].idx[1]],
- rowPtrs[_cscSets[csc].idx[2]],
- packedAcEnd,
- packedDcEnd,
- get_dwaCompressorToNonlinear(),
- _channelData[_cscSets[csc].idx[0]].width,
- _channelData[_cscSets[csc].idx[0]].height,
- _channelData[_cscSets[csc].idx[0]].type,
- _channelData[_cscSets[csc].idx[1]].type,
- _channelData[_cscSets[csc].idx[2]].type);
- encoder.execute();
- *totalAcUncompressedCount += encoder.numAcValuesEncoded();
- *totalDcUncompressedCount += encoder.numDcValuesEncoded();
- packedAcEnd += encoder.numAcValuesEncoded() * sizeof(unsigned short);
- packedDcEnd += encoder.numDcValuesEncoded() * sizeof(unsigned short);
- encodedChannels[_cscSets[csc].idx[0]] = true;
- encodedChannels[_cscSets[csc].idx[1]] = true;
- encodedChannels[_cscSets[csc].idx[2]] = true;
- }
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- {
- ChannelData *cd = &_channelData[chan];
- if (encodedChannels[chan])
- continue;
- switch (cd->compression)
- {
- case LOSSY_DCT:
- //
- // For LOSSY_DCT, treat this just like the CSC'd case,
- // but only operate on one channel
- //
- {
- const unsigned short *nonlinearLut = 0;
- if (!cd->pLinear)
- nonlinearLut = get_dwaCompressorToNonlinear();
- LossyDctEncoder encoder
- (_dwaCompressionLevel / 100000.f,
- rowPtrs[chan],
- packedAcEnd,
- packedDcEnd,
- nonlinearLut,
- cd->width,
- cd->height,
- cd->type);
- encoder.execute();
- *totalAcUncompressedCount += encoder.numAcValuesEncoded();
- *totalDcUncompressedCount += encoder.numDcValuesEncoded();
- packedAcEnd +=
- encoder.numAcValuesEncoded() * sizeof (unsigned short);
- packedDcEnd +=
- encoder.numDcValuesEncoded() * sizeof (unsigned short);
- }
- break;
- case RLE:
- //
- // For RLE, bash the bytes up so that the first bytes of each
- // pixel are contingous, as are the second bytes, and so on.
- //
- for (unsigned int y = 0; y < rowPtrs[chan].size(); ++y)
- {
- const char *row = rowPtrs[chan][y];
- for (int x = 0; x < cd->width; ++x)
- {
- for (int byte = 0;
- byte < OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
- ++byte)
- {
-
- *cd->planarUncRleEnd[byte]++ = *row++;
- }
- }
- *rleRawSize += cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type);
- }
- break;
- case UNKNOWN:
-
- //
- // Otherwise, just copy data over verbatim
- //
- {
- int scanlineSize = cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type);
- for (unsigned int y = 0; y < rowPtrs[chan].size(); ++y)
- {
- memcpy (cd->planarUncBufferEnd,
- rowPtrs[chan][y],
- scanlineSize);
-
- cd->planarUncBufferEnd += scanlineSize;
- }
- *unknownUncompressedSize += cd->planarUncSize;
- }
- break;
- default:
- assert (false);
- }
- encodedChannels[chan] = true;
- }
- //
- // Pack the Unknown data into the output buffer first. Instead of
- // just copying it uncompressed, try zlib compression at least.
- //
- if (*unknownUncompressedSize > 0)
- {
- uLongf inSize = (uLongf)(*unknownUncompressedSize);
- uLongf outSize = compressBound (inSize);
- if (Z_OK != ::compress2 ((Bytef *)outDataPtr,
- &outSize,
- (const Bytef *)_planarUncBuffer[UNKNOWN],
- inSize,
- 9))
- {
- throw IEX_NAMESPACE::BaseExc ("Data compression (zlib) failed.");
- }
- outDataPtr += outSize;
- *unknownCompressedSize = outSize;
- }
- //
- // Now, pack all the Lossy DCT coefficients into our output
- // buffer, with Huffman encoding.
- //
- // Also, record the compressed size and the number of
- // uncompressed componentns we have.
- //
- if (*totalAcUncompressedCount > 0)
- {
- switch (_acCompression)
- {
- case STATIC_HUFFMAN:
- *acCompressedSize = (int)
- hufCompress((unsigned short *)_packedAcBuffer,
- (int)*totalAcUncompressedCount,
- outDataPtr);
- break;
- case DEFLATE:
- {
- uLongf destLen = compressBound (
- (*totalAcUncompressedCount) * sizeof (unsigned short));
- if (Z_OK != ::compress2
- ((Bytef *)outDataPtr,
- &destLen,
- (Bytef *)_packedAcBuffer,
- (uLong)(*totalAcUncompressedCount
- * sizeof (unsigned short)),
- 9))
- {
- throw IEX_NAMESPACE::InputExc ("Data compression (zlib) failed.");
- }
- *acCompressedSize = destLen;
- }
- break;
- default:
-
- assert (false);
- }
- outDataPtr += *acCompressedSize;
- }
- //
- // Handle the DC components separately
- //
- if (*totalDcUncompressedCount > 0)
- {
- *dcCompressedSize = _zip->compress
- (_packedDcBuffer,
- (int)(*totalDcUncompressedCount) * sizeof (unsigned short),
- outDataPtr);
- outDataPtr += *dcCompressedSize;
- }
- //
- // If we have RLE data, first RLE encode it and set the uncompressed
- // size. Then, deflate the results and set the compressed size.
- //
- if (*rleRawSize > 0)
- {
- *rleUncompressedSize = rleCompress
- ((int)(*rleRawSize),
- _planarUncBuffer[RLE],
- (signed char *)_rleBuffer);
- uLongf dstLen = compressBound ((uLongf)*rleUncompressedSize);
- if (Z_OK != ::compress2
- ((Bytef *)outDataPtr,
- &dstLen,
- (Bytef *)_rleBuffer,
- (uLong)(*rleUncompressedSize),
- 9))
- {
- throw IEX_NAMESPACE::BaseExc ("Error compressing RLE'd data.");
- }
-
- *rleCompressedSize = dstLen;
- outDataPtr += *rleCompressedSize;
- }
- //
- // Flip the counters to XDR format
- //
- for (int i = 0; i < NUM_SIZES_SINGLE; ++i)
- {
- Int64 src = *(((Int64 *)_outBuffer) + i);
- char *dst = (char *)(((Int64 *)_outBuffer) + i);
- Xdr::write<CharPtrIO> (dst, src);
- }
- //
- // We're done - compute the number of bytes we packed
- //
- outPtr = _outBuffer;
- return static_cast<int>(outDataPtr - _outBuffer + 1);
- }
- int
- DwaCompressor::uncompress
- (const char *inPtr,
- int inSize,
- int minY,
- const char *&outPtr)
- {
- return uncompress (inPtr,
- inSize,
- IMATH_NAMESPACE::Box2i (IMATH_NAMESPACE::V2i (_min[0], minY),
- IMATH_NAMESPACE::V2i (_max[0], minY + numScanLines() - 1)),
- outPtr);
- }
- int
- DwaCompressor::uncompressTile
- (const char *inPtr,
- int inSize,
- IMATH_NAMESPACE::Box2i range,
- const char *&outPtr)
- {
- return uncompress (inPtr, inSize, range, outPtr);
- }
- int
- DwaCompressor::uncompress
- (const char *inPtr,
- int inSize,
- IMATH_NAMESPACE::Box2i range,
- const char *&outPtr)
- {
- int minX = range.min.x;
- int maxX = std::min (range.max.x, _max[0]);
- int minY = range.min.y;
- int maxY = std::min (range.max.y, _max[1]);
- int headerSize = NUM_SIZES_SINGLE*sizeof(Int64);
- if (inSize < headerSize)
- {
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- "(truncated header).");
- }
- //
- // Flip the counters from XDR to NATIVE
- //
- for (int i = 0; i < NUM_SIZES_SINGLE; ++i)
- {
- Int64 *dst = (((Int64 *)inPtr) + i);
- const char *src = (char *)(((Int64 *)inPtr) + i);
- Xdr::read<CharPtrIO> (src, *dst);
- }
- //
- // Unwind all the counter info
- //
- const Int64 *inPtr64 = (const Int64*) inPtr;
- Int64 version = *(inPtr64 + VERSION);
- Int64 unknownUncompressedSize = *(inPtr64 + UNKNOWN_UNCOMPRESSED_SIZE);
- Int64 unknownCompressedSize = *(inPtr64 + UNKNOWN_COMPRESSED_SIZE);
- Int64 acCompressedSize = *(inPtr64 + AC_COMPRESSED_SIZE);
- Int64 dcCompressedSize = *(inPtr64 + DC_COMPRESSED_SIZE);
- Int64 rleCompressedSize = *(inPtr64 + RLE_COMPRESSED_SIZE);
- Int64 rleUncompressedSize = *(inPtr64 + RLE_UNCOMPRESSED_SIZE);
- Int64 rleRawSize = *(inPtr64 + RLE_RAW_SIZE);
-
- Int64 totalAcUncompressedCount = *(inPtr64 + AC_UNCOMPRESSED_COUNT);
- Int64 totalDcUncompressedCount = *(inPtr64 + DC_UNCOMPRESSED_COUNT);
- Int64 acCompression = *(inPtr64 + AC_COMPRESSION);
- Int64 compressedSize = unknownCompressedSize +
- acCompressedSize +
- dcCompressedSize +
- rleCompressedSize;
- const char *dataPtr = inPtr + NUM_SIZES_SINGLE * sizeof(Int64);
- /* Both the sum and individual sizes are checked in case of overflow. */
- if (inSize < (headerSize + compressedSize) ||
- inSize < unknownCompressedSize ||
- inSize < acCompressedSize ||
- inSize < dcCompressedSize ||
- inSize < rleCompressedSize)
- {
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- "(truncated file).");
- }
- if ((SInt64)unknownUncompressedSize < 0 ||
- (SInt64)unknownCompressedSize < 0 ||
- (SInt64)acCompressedSize < 0 ||
- (SInt64)dcCompressedSize < 0 ||
- (SInt64)rleCompressedSize < 0 ||
- (SInt64)rleUncompressedSize < 0 ||
- (SInt64)rleRawSize < 0 ||
- (SInt64)totalAcUncompressedCount < 0 ||
- (SInt64)totalDcUncompressedCount < 0)
- {
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (corrupt header).");
- }
- if (version < 2)
- initializeLegacyChannelRules();
- else
- {
- unsigned short ruleSize = 0;
- Xdr::read<CharPtrIO>(dataPtr, ruleSize);
- if (ruleSize < 0)
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (corrupt header file).");
- headerSize += ruleSize;
- if (inSize < headerSize + compressedSize)
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- " (truncated file).");
- _channelRules.clear();
- ruleSize -= Xdr::size<unsigned short> ();
- while (ruleSize > 0)
- {
- Classifier rule(dataPtr, ruleSize);
-
- _channelRules.push_back(rule);
- ruleSize -= rule.size();
- }
- }
- size_t outBufferSize = 0;
- initializeBuffers(outBufferSize);
- //
- // Allocate _outBuffer, if we haven't done so already
- //
- if (_maxScanLineSize * numScanLines() > _outBufferSize)
- {
- _outBufferSize = _maxScanLineSize * numScanLines();
- if (_outBuffer != 0)
- delete[] _outBuffer;
- _outBuffer = new char[_maxScanLineSize * numScanLines()];
- }
- char *outBufferEnd = _outBuffer;
-
- //
- // Find the start of the RLE packed AC components and
- // the DC components for each channel. This will be handy
- // if you want to decode the channels in parallel later on.
- //
- char *packedAcBufferEnd = 0;
- if (_packedAcBuffer)
- packedAcBufferEnd = _packedAcBuffer;
- char *packedDcBufferEnd = 0;
- if (_packedDcBuffer)
- packedDcBufferEnd = _packedDcBuffer;
- //
- // UNKNOWN data is packed first, followed by the
- // Huffman-compressed AC, then the DC values,
- // and then the zlib compressed RLE data.
- //
-
- const char *compressedUnknownBuf = dataPtr;
- const char *compressedAcBuf = compressedUnknownBuf +
- static_cast<ptrdiff_t>(unknownCompressedSize);
- const char *compressedDcBuf = compressedAcBuf +
- static_cast<ptrdiff_t>(acCompressedSize);
- const char *compressedRleBuf = compressedDcBuf +
- static_cast<ptrdiff_t>(dcCompressedSize);
- //
- // Sanity check that the version is something we expect. Right now,
- // we can decode version 0, 1, and 2. v1 adds 'end of block' symbols
- // to the AC RLE. v2 adds channel classification rules at the
- // start of the data block.
- //
- if (version > 2)
- throw IEX_NAMESPACE::InputExc ("Invalid version of compressed data block");
- setupChannelData(minX, minY, maxX, maxY);
- //
- // Uncompress the UNKNOWN data into _planarUncBuffer[UNKNOWN]
- //
- if (unknownCompressedSize > 0)
- {
- if (unknownUncompressedSize > _planarUncBufferSize[UNKNOWN])
- {
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- "(corrupt header).");
- }
- uLongf outSize = (uLongf)unknownUncompressedSize;
- if (Z_OK != ::uncompress
- ((Bytef *)_planarUncBuffer[UNKNOWN],
- &outSize,
- (Bytef *)compressedUnknownBuf,
- (uLong)unknownCompressedSize))
- {
- throw IEX_NAMESPACE::BaseExc("Error uncompressing UNKNOWN data.");
- }
- }
- //
- // Uncompress the AC data into _packedAcBuffer
- //
- if (acCompressedSize > 0)
- {
- if (totalAcUncompressedCount*sizeof(unsigned short) > _packedAcBufferSize)
- {
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- "(corrupt header).");
- }
- //
- // Don't trust the user to get it right, look in the file.
- //
- switch (acCompression)
- {
- case STATIC_HUFFMAN:
- hufUncompress
- (compressedAcBuf,
- (int)acCompressedSize,
- (unsigned short *)_packedAcBuffer,
- (int)totalAcUncompressedCount);
- break;
- case DEFLATE:
- {
- uLongf destLen =
- (int)(totalAcUncompressedCount) * sizeof (unsigned short);
- if (Z_OK != ::uncompress
- ((Bytef *)_packedAcBuffer,
- &destLen,
- (Bytef *)compressedAcBuf,
- (uLong)acCompressedSize))
- {
- throw IEX_NAMESPACE::InputExc ("Data decompression (zlib) failed.");
- }
- if (totalAcUncompressedCount * sizeof (unsigned short) !=
- destLen)
- {
- throw IEX_NAMESPACE::InputExc ("AC data corrupt.");
- }
- }
- break;
- default:
- throw IEX_NAMESPACE::NoImplExc ("Unknown AC Compression");
- break;
- }
- }
- //
- // Uncompress the DC data into _packedDcBuffer
- //
- if (dcCompressedSize > 0)
- {
- if (totalDcUncompressedCount*sizeof(unsigned short) > _packedDcBufferSize)
- {
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- "(corrupt header).");
- }
- if (_zip->uncompress
- (compressedDcBuf, (int)dcCompressedSize, _packedDcBuffer)
- != (int)totalDcUncompressedCount * sizeof (unsigned short))
- {
- throw IEX_NAMESPACE::BaseExc("DC data corrupt.");
- }
- }
- //
- // Uncompress the RLE data into _rleBuffer, then unRLE the results
- // into _planarUncBuffer[RLE]
- //
- if (rleRawSize > 0)
- {
- if (rleUncompressedSize > _rleBufferSize ||
- rleRawSize > _planarUncBufferSize[RLE])
- {
- throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
- "(corrupt header).");
- }
-
- uLongf dstLen = (uLongf)rleUncompressedSize;
- if (Z_OK != ::uncompress
- ((Bytef *)_rleBuffer,
- &dstLen,
- (Bytef *)compressedRleBuf,
- (uLong)rleCompressedSize))
- {
- throw IEX_NAMESPACE::BaseExc("Error uncompressing RLE data.");
- }
- if (dstLen != rleUncompressedSize)
- throw IEX_NAMESPACE::BaseExc("RLE data corrupted");
- if (rleUncompress
- ((int)rleUncompressedSize,
- (int)rleRawSize,
- (signed char *)_rleBuffer,
- _planarUncBuffer[RLE]) != rleRawSize)
- {
- throw IEX_NAMESPACE::BaseExc("RLE data corrupted");
- }
- }
- //
- // Determine the start of each row in the output buffer
- //
- std::vector<bool> decodedChannels (_channelData.size());
- std::vector< std::vector<char *> > rowPtrs (_channelData.size());
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- decodedChannels[chan] = false;
- outBufferEnd = _outBuffer;
- for (int y = minY; y <= maxY; ++y)
- {
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- {
- ChannelData *cd = &_channelData[chan];
- if (IMATH_NAMESPACE::modp (y, cd->ySampling) != 0)
- continue;
- rowPtrs[chan].push_back (outBufferEnd);
- outBufferEnd += cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
- }
- }
- //
- // Setup to decode each block of 3 channels that need to
- // be handled together
- //
- for (unsigned int csc = 0; csc < _cscSets.size(); ++csc)
- {
- int rChan = _cscSets[csc].idx[0];
- int gChan = _cscSets[csc].idx[1];
- int bChan = _cscSets[csc].idx[2];
- LossyDctDecoderCsc decoder
- (rowPtrs[rChan],
- rowPtrs[gChan],
- rowPtrs[bChan],
- packedAcBufferEnd,
- packedDcBufferEnd,
- get_dwaCompressorToLinear(),
- _channelData[rChan].width,
- _channelData[rChan].height,
- _channelData[rChan].type,
- _channelData[gChan].type,
- _channelData[bChan].type);
- decoder.execute();
- packedAcBufferEnd +=
- decoder.numAcValuesEncoded() * sizeof (unsigned short);
- packedDcBufferEnd +=
- decoder.numDcValuesEncoded() * sizeof (unsigned short);
- decodedChannels[rChan] = true;
- decodedChannels[gChan] = true;
- decodedChannels[bChan] = true;
- }
- //
- // Setup to handle the remaining channels by themselves
- //
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- {
- if (decodedChannels[chan])
- continue;
- ChannelData *cd = &_channelData[chan];
- int pixelSize = OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
- switch (cd->compression)
- {
- case LOSSY_DCT:
- //
- // Setup a single-channel lossy DCT decoder pointing
- // at the output buffer
- //
- {
- const unsigned short *linearLut = 0;
- if (!cd->pLinear)
- linearLut = get_dwaCompressorToLinear();
- LossyDctDecoder decoder
- (rowPtrs[chan],
- packedAcBufferEnd,
- packedDcBufferEnd,
- linearLut,
- cd->width,
- cd->height,
- cd->type);
- decoder.execute();
- packedAcBufferEnd +=
- decoder.numAcValuesEncoded() * sizeof (unsigned short);
- packedDcBufferEnd +=
- decoder.numDcValuesEncoded() * sizeof (unsigned short);
- }
- break;
- case RLE:
- //
- // For the RLE case, the data has been un-RLE'd into
- // planarUncRleEnd[], but is still split out by bytes.
- // We need to rearrange the bytes back into the correct
- // order in the output buffer;
- //
- {
- int row = 0;
- for (int y = minY; y <= maxY; ++y)
- {
- if (IMATH_NAMESPACE::modp (y, cd->ySampling) != 0)
- continue;
- char *dst = rowPtrs[chan][row];
- if (pixelSize == 2)
- {
- interleaveByte2 (dst,
- cd->planarUncRleEnd[0],
- cd->planarUncRleEnd[1],
- cd->width);
-
- cd->planarUncRleEnd[0] += cd->width;
- cd->planarUncRleEnd[1] += cd->width;
- }
- else
- {
- for (int x = 0; x < cd->width; ++x)
- {
- for (int byte = 0; byte < pixelSize; ++byte)
- {
- *dst++ = *cd->planarUncRleEnd[byte]++;
- }
- }
- }
- row++;
- }
- }
- break;
- case UNKNOWN:
- //
- // In the UNKNOWN case, data is already in planarUncBufferEnd
- // and just needs to copied over to the output buffer
- //
- {
- int row = 0;
- int dstScanlineSize = cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
- for (int y = minY; y <= maxY; ++y)
- {
- if (IMATH_NAMESPACE::modp (y, cd->ySampling) != 0)
- continue;
- memcpy (rowPtrs[chan][row],
- cd->planarUncBufferEnd,
- dstScanlineSize);
- cd->planarUncBufferEnd += dstScanlineSize;
- row++;
- }
- }
- break;
- default:
- throw IEX_NAMESPACE::NoImplExc ("Unhandled compression scheme case");
- break;
- }
- decodedChannels[chan] = true;
- }
- //
- // Return a ptr to _outBuffer
- //
- outPtr = _outBuffer;
- return (int)(outBufferEnd - _outBuffer);
- }
- // static
- void
- DwaCompressor::initializeFuncs()
- {
- convertFloatToHalf64 = convertFloatToHalf64_scalar;
- fromHalfZigZag = fromHalfZigZag_scalar;
- CpuId cpuId;
- //
- // Setup HALF <-> FLOAT conversion implementations
- //
- if (cpuId.avx && cpuId.f16c)
- {
- convertFloatToHalf64 = convertFloatToHalf64_f16c;
- fromHalfZigZag = fromHalfZigZag_f16c;
- }
- //
- // Setup inverse DCT implementations
- //
- dctInverse8x8_0 = dctInverse8x8_scalar<0>;
- dctInverse8x8_1 = dctInverse8x8_scalar<1>;
- dctInverse8x8_2 = dctInverse8x8_scalar<2>;
- dctInverse8x8_3 = dctInverse8x8_scalar<3>;
- dctInverse8x8_4 = dctInverse8x8_scalar<4>;
- dctInverse8x8_5 = dctInverse8x8_scalar<5>;
- dctInverse8x8_6 = dctInverse8x8_scalar<6>;
- dctInverse8x8_7 = dctInverse8x8_scalar<7>;
- if (cpuId.avx)
- {
- dctInverse8x8_0 = dctInverse8x8_avx<0>;
- dctInverse8x8_1 = dctInverse8x8_avx<1>;
- dctInverse8x8_2 = dctInverse8x8_avx<2>;
- dctInverse8x8_3 = dctInverse8x8_avx<3>;
- dctInverse8x8_4 = dctInverse8x8_avx<4>;
- dctInverse8x8_5 = dctInverse8x8_avx<5>;
- dctInverse8x8_6 = dctInverse8x8_avx<6>;
- dctInverse8x8_7 = dctInverse8x8_avx<7>;
- }
- else if (cpuId.sse2)
- {
- dctInverse8x8_0 = dctInverse8x8_sse2<0>;
- dctInverse8x8_1 = dctInverse8x8_sse2<1>;
- dctInverse8x8_2 = dctInverse8x8_sse2<2>;
- dctInverse8x8_3 = dctInverse8x8_sse2<3>;
- dctInverse8x8_4 = dctInverse8x8_sse2<4>;
- dctInverse8x8_5 = dctInverse8x8_sse2<5>;
- dctInverse8x8_6 = dctInverse8x8_sse2<6>;
- dctInverse8x8_7 = dctInverse8x8_sse2<7>;
- }
- }
- //
- // Handle channel classification and buffer allocation once we know
- // how to classify channels
- //
- void
- DwaCompressor::initializeBuffers (size_t &outBufferSize)
- {
- classifyChannels (_channels, _channelData, _cscSets);
- //
- // _outBuffer needs to be big enough to hold all our
- // compressed data - which could vary depending on what sort
- // of channels we have.
- //
- int maxOutBufferSize = 0;
- int numLossyDctChans = 0;
- int unknownBufferSize = 0;
- int rleBufferSize = 0;
- int maxLossyDctAcSize = (int)ceil ((float)numScanLines() / 8.0f) *
- (int)ceil ((float)(_max[0] - _min[0] + 1) / 8.0f) *
- 63 * sizeof (unsigned short);
- int maxLossyDctDcSize = (int)ceil ((float)numScanLines() / 8.0f) *
- (int)ceil ((float)(_max[0] - _min[0] + 1) / 8.0f) *
- sizeof (unsigned short);
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- {
- switch (_channelData[chan].compression)
- {
- case LOSSY_DCT:
- //
- // This is the size of the number of packed
- // components, plus the requirements for
- // maximum Huffman encoding size (for STATIC_HUFFMAN)
- // or for zlib compression (for DEFLATE)
- //
- maxOutBufferSize += std::max(
- (int)(2 * maxLossyDctAcSize + 65536),
- (int)compressBound (maxLossyDctAcSize) );
- numLossyDctChans++;
- break;
- case RLE:
- {
- //
- // RLE, if gone horribly wrong, could double the size
- // of the source data.
- //
- int rleAmount = 2 * numScanLines() * (_max[0] - _min[0] + 1) *
- OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
- rleBufferSize += rleAmount;
- }
- break;
- case UNKNOWN:
- unknownBufferSize += numScanLines() * (_max[0] - _min[0] + 1) *
- OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
- break;
- default:
- throw IEX_NAMESPACE::NoImplExc ("Unhandled compression scheme case");
- break;
- }
- }
- //
- // Also, since the results of the RLE are packed into
- // the output buffer, we need the extra room there. But
- // we're going to zlib compress() the data we pack,
- // which could take slightly more space
- //
- maxOutBufferSize += (int)compressBound ((uLongf)rleBufferSize);
-
- //
- // And the same goes for the UNKNOWN data
- //
- maxOutBufferSize += (int)compressBound ((uLongf)unknownBufferSize);
- //
- // Allocate a zip/deflate compressor big enought to hold the DC data
- // and include it's compressed results in the size requirements
- // for our output buffer
- //
- if (_zip == 0)
- _zip = new Zip (maxLossyDctDcSize * numLossyDctChans);
- else if (_zip->maxRawSize() < maxLossyDctDcSize * numLossyDctChans)
- {
- delete _zip;
- _zip = new Zip (maxLossyDctDcSize * numLossyDctChans);
- }
- maxOutBufferSize += _zip->maxCompressedSize();
- //
- // We also need to reserve space at the head of the buffer to
- // write out the size of our various packed and compressed data.
- //
- maxOutBufferSize += NUM_SIZES_SINGLE * sizeof (Int64);
-
- //
- // Later, we're going to hijack outBuffer for the result of
- // both encoding and decoding. So it needs to be big enough
- // to hold either a buffers' worth of uncompressed or
- // compressed data
- //
- // For encoding, we'll need _outBuffer to hold maxOutBufferSize bytes,
- // but for decoding, we only need it to be maxScanLineSize*numScanLines.
- // Cache the max size for now, and alloc the buffer when we either
- // encode or decode.
- //
- outBufferSize = maxOutBufferSize;
- //
- // _packedAcBuffer holds the quantized DCT coefficients prior
- // to Huffman encoding
- //
- if (maxLossyDctAcSize * numLossyDctChans > _packedAcBufferSize)
- {
- _packedAcBufferSize = maxLossyDctAcSize * numLossyDctChans;
- if (_packedAcBuffer != 0)
- delete[] _packedAcBuffer;
- _packedAcBuffer = new char[_packedAcBufferSize];
- }
- //
- // _packedDcBuffer holds one quantized DCT coef per 8x8 block
- //
- if (maxLossyDctDcSize * numLossyDctChans > _packedDcBufferSize)
- {
- _packedDcBufferSize = maxLossyDctDcSize * numLossyDctChans;
- if (_packedDcBuffer != 0)
- delete[] _packedDcBuffer;
- _packedDcBuffer = new char[_packedDcBufferSize];
- }
- if (rleBufferSize > _rleBufferSize)
- {
- _rleBufferSize = rleBufferSize;
- if (_rleBuffer != 0)
- delete[] _rleBuffer;
- _rleBuffer = new char[rleBufferSize];
- }
- //
- // The planar uncompressed buffer will hold float data for LOSSY_DCT
- // compressed values, and whatever the native type is for other
- // channels. We're going to use this to hold data in a planar
- // format, as opposed to the native interleaved format we take
- // into compress() and give back from uncompress().
- //
- // This also makes it easier to compress the UNKNOWN and RLE data
- // all in one swoop (for each compression scheme).
- //
- int planarUncBufferSize[NUM_COMPRESSOR_SCHEMES];
- for (int i=0; i<NUM_COMPRESSOR_SCHEMES; ++i)
- planarUncBufferSize[i] = 0;
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- {
- switch (_channelData[chan].compression)
- {
- case LOSSY_DCT:
- break;
- case RLE:
- planarUncBufferSize[RLE] +=
- numScanLines() * (_max[0] - _min[0] + 1) *
- OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
- break;
- case UNKNOWN:
- planarUncBufferSize[UNKNOWN] +=
- numScanLines() * (_max[0] - _min[0] + 1) *
- OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
- break;
- default:
- throw IEX_NAMESPACE::NoImplExc ("Unhandled compression scheme case");
- break;
- }
- }
- //
- // UNKNOWN data is going to be zlib compressed, which needs
- // a little extra headroom
- //
- if (planarUncBufferSize[UNKNOWN] > 0)
- {
- planarUncBufferSize[UNKNOWN] =
- compressBound ((uLongf)planarUncBufferSize[UNKNOWN]);
- }
- for (int i = 0; i < NUM_COMPRESSOR_SCHEMES; ++i)
- {
- if (planarUncBufferSize[i] > _planarUncBufferSize[i])
- {
- _planarUncBufferSize[i] = planarUncBufferSize[i];
- if (_planarUncBuffer[i] != 0)
- delete[] _planarUncBuffer[i];
- _planarUncBuffer[i] = new char[planarUncBufferSize[i]];
- }
- }
- }
- //
- // Setup channel classification rules to use when writing files
- //
- void
- DwaCompressor::initializeDefaultChannelRules ()
- {
- _channelRules.clear();
- _channelRules.push_back (Classifier ("R", LOSSY_DCT, HALF, 0, false));
- _channelRules.push_back (Classifier ("R", LOSSY_DCT, FLOAT, 0, false));
- _channelRules.push_back (Classifier ("G", LOSSY_DCT, HALF, 1, false));
- _channelRules.push_back (Classifier ("G", LOSSY_DCT, FLOAT, 1, false));
- _channelRules.push_back (Classifier ("B", LOSSY_DCT, HALF, 2, false));
- _channelRules.push_back (Classifier ("B", LOSSY_DCT, FLOAT, 2, false));
- _channelRules.push_back (Classifier ("Y", LOSSY_DCT, HALF, -1, false));
- _channelRules.push_back (Classifier ("Y", LOSSY_DCT, FLOAT, -1, false));
- _channelRules.push_back (Classifier ("BY", LOSSY_DCT, HALF, -1, false));
- _channelRules.push_back (Classifier ("BY", LOSSY_DCT, FLOAT, -1, false));
- _channelRules.push_back (Classifier ("RY", LOSSY_DCT, HALF, -1, false));
- _channelRules.push_back (Classifier ("RY", LOSSY_DCT, FLOAT, -1, false));
- _channelRules.push_back (Classifier ("A", RLE, UINT, -1, false));
- _channelRules.push_back (Classifier ("A", RLE, HALF, -1, false));
- _channelRules.push_back (Classifier ("A", RLE, FLOAT, -1, false));
- }
- //
- // Setup channel classification rules when reading files with VERSION < 2
- //
- void
- DwaCompressor::initializeLegacyChannelRules ()
- {
- _channelRules.clear();
- _channelRules.push_back (Classifier ("r", LOSSY_DCT, HALF, 0, true));
- _channelRules.push_back (Classifier ("r", LOSSY_DCT, FLOAT, 0, true));
- _channelRules.push_back (Classifier ("red", LOSSY_DCT, HALF, 0, true));
- _channelRules.push_back (Classifier ("red", LOSSY_DCT, FLOAT, 0, true));
- _channelRules.push_back (Classifier ("g", LOSSY_DCT, HALF, 1, true));
- _channelRules.push_back (Classifier ("g", LOSSY_DCT, FLOAT, 1, true));
- _channelRules.push_back (Classifier ("grn", LOSSY_DCT, HALF, 1, true));
- _channelRules.push_back (Classifier ("grn", LOSSY_DCT, FLOAT, 1, true));
- _channelRules.push_back (Classifier ("green", LOSSY_DCT, HALF, 1, true));
- _channelRules.push_back (Classifier ("green", LOSSY_DCT, FLOAT, 1, true));
- _channelRules.push_back (Classifier ("b", LOSSY_DCT, HALF, 2, true));
- _channelRules.push_back (Classifier ("b", LOSSY_DCT, FLOAT, 2, true));
- _channelRules.push_back (Classifier ("blu", LOSSY_DCT, HALF, 2, true));
- _channelRules.push_back (Classifier ("blu", LOSSY_DCT, FLOAT, 2, true));
- _channelRules.push_back (Classifier ("blue", LOSSY_DCT, HALF, 2, true));
- _channelRules.push_back (Classifier ("blue", LOSSY_DCT, FLOAT, 2, true));
- _channelRules.push_back (Classifier ("y", LOSSY_DCT, HALF, -1, true));
- _channelRules.push_back (Classifier ("y", LOSSY_DCT, FLOAT, -1, true));
- _channelRules.push_back (Classifier ("by", LOSSY_DCT, HALF, -1, true));
- _channelRules.push_back (Classifier ("by", LOSSY_DCT, FLOAT, -1, true));
- _channelRules.push_back (Classifier ("ry", LOSSY_DCT, HALF, -1, true));
- _channelRules.push_back (Classifier ("ry", LOSSY_DCT, FLOAT, -1, true));
- _channelRules.push_back (Classifier ("a", RLE, UINT, -1, true));
- _channelRules.push_back (Classifier ("a", RLE, HALF, -1, true));
- _channelRules.push_back (Classifier ("a", RLE, FLOAT, -1, true));
- }
- //
- // Given a set of rules and ChannelData, figure out which rules apply
- //
- void
- DwaCompressor::relevantChannelRules (std::vector<Classifier> &rules) const
- {
- rules.clear();
- std::vector<std::string> suffixes;
-
- for (size_t cd = 0; cd < _channelData.size(); ++cd)
- {
- std::string suffix = _channelData[cd].name;
- size_t lastDot = suffix.find_last_of ('.');
- if (lastDot != std::string::npos)
- suffix = suffix.substr (lastDot+1, std::string::npos);
- suffixes.push_back(suffix);
- }
-
- for (size_t i = 0; i < _channelRules.size(); ++i)
- {
- for (size_t cd = 0; cd < _channelData.size(); ++cd)
- {
- if (_channelRules[i].match (suffixes[cd], _channelData[cd].type ))
- {
- rules.push_back (_channelRules[i]);
- break;
- }
- }
- }
- }
- //
- // Take our initial list of channels, and cache the contents.
- //
- // Determine approprate compression schemes for each channel,
- // and figure out which sets should potentially be CSC'ed
- // prior to lossy compression.
- //
- void
- DwaCompressor::classifyChannels
- (ChannelList channels,
- std::vector<ChannelData> &chanData,
- std::vector<CscChannelSet> &cscData)
- {
- //
- // prefixMap used to map channel name prefixes to
- // potential CSC-able sets of channels.
- //
- std::map<std::string, DwaCompressor::CscChannelSet> prefixMap;
- std::vector<DwaCompressor::CscChannelSet> tmpCscSet;
- unsigned int numChan = 0;
- for (ChannelList::Iterator c = channels.begin(); c != channels.end(); ++c)
- numChan++;
-
- if (numChan)
- chanData.resize (numChan);
- //
- // Cache the relevant data from the channel structs.
- //
- unsigned int offset = 0;
- for (ChannelList::Iterator c = channels.begin(); c != channels.end(); ++c)
- {
- chanData[offset].name = std::string (c.name());
- chanData[offset].compression = UNKNOWN;
- chanData[offset].xSampling = c.channel().xSampling;
- chanData[offset].ySampling = c.channel().ySampling;
- chanData[offset].type = c.channel().type;
- chanData[offset].pLinear = c.channel().pLinear;
- offset++;
- }
- //
- // Try and figure out which channels should be
- // compressed by which means.
- //
- for (offset = 0; offset<numChan; ++offset)
- {
- std::string prefix = "";
- std::string suffix = chanData[offset].name;
- size_t lastDot = suffix.find_last_of ('.');
- if (lastDot != std::string::npos)
- {
- prefix = suffix.substr (0, lastDot);
- suffix = suffix.substr (lastDot+1, std::string::npos);
- }
- //
- // Make sure we have an entry in our CSC set map
- //
- std::map<std::string, DwaCompressor::CscChannelSet>::iterator
- theSet = prefixMap.find (prefix);
- if (theSet == prefixMap.end())
- {
- DwaCompressor::CscChannelSet tmpSet;
- tmpSet.idx[0] =
- tmpSet.idx[1] =
- tmpSet.idx[2] = -1;
- prefixMap[prefix] = tmpSet;
- }
- //
- // Check the suffix against the list of classifications
- // we defined previously. If the _cscIdx is not negative,
- // it indicates that we should be part of a CSC group.
- //
- for (std::vector<Classifier>::iterator i = _channelRules.begin();
- i != _channelRules.end();
- ++i)
- {
- if ( i->match(suffix, chanData[offset].type) )
- {
- chanData[offset].compression = i->_scheme;
- if ( i->_cscIdx >= 0)
- prefixMap[prefix].idx[i->_cscIdx] = offset;
- }
- }
- }
- //
- // Finally, try and find RGB sets of channels which
- // can be CSC'ed to a Y'CbCr space prior to loss, for
- // better compression.
- //
- // Walk over our set of candidates, and see who has
- // all three channels defined (and has common sampling
- // patterns, etc).
- //
- for (std::map<std::string, DwaCompressor::CscChannelSet>::iterator
- theItem = prefixMap.begin(); theItem != prefixMap.end();
- ++theItem)
- {
- int red = (*theItem).second.idx[0];
- int grn = (*theItem).second.idx[1];
- int blu = (*theItem).second.idx[2];
- if ((red < 0) || (grn < 0) || (blu < 0))
- continue;
- if ((chanData[red].xSampling != chanData[grn].xSampling) ||
- (chanData[red].xSampling != chanData[blu].xSampling) ||
- (chanData[grn].xSampling != chanData[blu].xSampling) ||
- (chanData[red].ySampling != chanData[grn].ySampling) ||
- (chanData[red].ySampling != chanData[blu].ySampling) ||
- (chanData[grn].ySampling != chanData[blu].ySampling))
- {
- continue;
- }
-
- tmpCscSet.push_back ((*theItem).second);
- }
-
- size_t numCsc = tmpCscSet.size();
- if (numCsc)
- cscData.resize(numCsc);
- for (offset = 0; offset < numCsc; ++offset)
- cscData[offset] = tmpCscSet[offset];
- }
- //
- // Setup some buffer pointers, determine channel sizes, things
- // like that.
- //
- void
- DwaCompressor::setupChannelData (int minX, int minY, int maxX, int maxY)
- {
- char *planarUncBuffer[NUM_COMPRESSOR_SCHEMES];
- for (int i=0; i<NUM_COMPRESSOR_SCHEMES; ++i)
- {
- planarUncBuffer[i] = 0;
- if (_planarUncBuffer[i])
- planarUncBuffer[i] = _planarUncBuffer[i];
- }
- for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
- {
- ChannelData *cd = &_channelData[chan];
- cd->width = OPENEXR_IMF_NAMESPACE::numSamples (cd->xSampling, minX, maxX);
- cd->height = OPENEXR_IMF_NAMESPACE::numSamples (cd->ySampling, minY, maxY);
-
- cd->planarUncSize =
- cd->width * cd->height * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
-
- cd->planarUncBuffer = planarUncBuffer[cd->compression];
- cd->planarUncBufferEnd = cd->planarUncBuffer;
- cd->planarUncRle[0] = cd->planarUncBuffer;
- cd->planarUncRleEnd[0] = cd->planarUncRle[0];
- for (int byte = 1; byte < OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type); ++byte)
- {
- cd->planarUncRle[byte] =
- cd->planarUncRle[byte-1] + cd->width * cd->height;
- cd->planarUncRleEnd[byte] =
- cd->planarUncRle[byte];
- }
- cd->planarUncType = cd->type;
- if (cd->compression == LOSSY_DCT)
- {
- cd->planarUncType = FLOAT;
- }
- else
- {
- planarUncBuffer[cd->compression] +=
- cd->width * cd->height * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->planarUncType);
- }
- }
- }
- OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT
|