Structured forests for fast edge detection {#tutorial_ximgproc_prediction} ========================================== Introduction ------------ In this tutorial you will learn how to use structured forests for the purpose of edge detection in an image. Examples -------- ![image](images/01.jpg) ![image](images/02.jpg) ![image](images/03.jpg) ![image](images/04.jpg) ![image](images/05.jpg) ![image](images/06.jpg) ![image](images/07.jpg) ![image](images/08.jpg) ![image](images/09.jpg) ![image](images/10.jpg) ![image](images/11.jpg) ![image](images/12.jpg) @note binarization techniques like Canny edge detector are applicable to edges produced by both algorithms (Sobel and StructuredEdgeDetection::detectEdges). Source Code ----------- @includelineno ximgproc/samples/structured_edge_detection.cpp Explanation ----------- -# **Load source color image** @snippet ximgproc/samples/structured_edge_detection.cpp imread -# **Convert source image to float [0;1] range** @snippet ximgproc/samples/structured_edge_detection.cpp convert -# **Run main algorithm** @snippet ximgproc/samples/structured_edge_detection.cpp create @snippet ximgproc/samples/structured_edge_detection.cpp detect @snippet ximgproc/samples/structured_edge_detection.cpp nms -# **Show results** @snippet ximgproc/samples/structured_edge_detection.cpp imshow Literature ---------- For more information, refer to the following papers : @cite Dollar2013 @cite Lim2013