/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2015, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/tracking/kalman_filters.hpp" namespace opencv_test { namespace { using namespace cv::detail; // In this two tests Augmented Unscented Kalman Filter are applied to the dynamic system from example "The reentry problem" from // "A New Extension of the Kalman Filter to Nonlinear Systems" by Simon J. Julier and Jeffrey K. Uhlmann. class BallisticModel: public UkfSystemModel { static const double step_h; Mat diff_eq(const Mat& x) { double x1 = x.at(0, 0); double x2 = x.at(1, 0); double x3 = x.at(2, 0); double x4 = x.at(3, 0); double x5 = x.at(4, 0); const double h0 = 9.3; const double beta0 = 0.59783; const double Gm = 3.9860044 * 1e5; const double r_e = 6374; const double r = sqrt( x1*x1 + x2*x2 ); const double v = sqrt( x3*x3 + x4*x4 ); const double d = - beta0 * exp( ( r_e - r )/h0 ) * exp( x5 ) * v; const double g = - Gm / (r*r*r); Mat fx = x.clone(); fx.at(0, 0) = x3; fx.at(1, 0) = x4; fx.at(2, 0) = d * x3 + g * x1; fx.at(3, 0) = d * x4 + g * x2; fx.at(4, 0) = 0.0; return fx; } public: void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1) { Mat v = sqrt(step_h) * v_k.clone(); v.at(0, 0) = 0.0; v.at(1, 0) = 0.0; Mat k1 = diff_eq( x_k ) + v; Mat tmp = x_k + step_h*0.5*k1; Mat k2 = diff_eq( tmp ) + v; tmp = x_k + step_h*0.5*k2; Mat k3 = diff_eq( tmp ) + v; tmp = x_k + step_h*k3; Mat k4 = diff_eq( tmp ) + v; x_kplus1 = x_k + (1.0/6.0)*step_h*( k1 + 2.0*k2 + 2.0*k3 + k4 ) + u_k; } void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k) { double x1 = x_k.at(0, 0); double x2 = x_k.at(1, 0); double x1_r = 6374.0; double x2_r = 0.0; double R = sqrt( pow( x1 - x1_r, 2 ) + pow( x2 - x2_r, 2 ) ); double Phi = atan( (x2 - x2_r)/(x1 - x1_r) ); R += n_k.at(0, 0); Phi += n_k.at(1, 0); z_k.at(0, 0) = R; z_k.at(1, 0) = Phi; } }; const double BallisticModel::step_h = 0.05; TEST(AUKF, br_landing_point) { const double abs_error = 0.1; const int nIterations = 4000; // number of iterations before landing const double landing_coordinate = 2.5; // the expected landing coordinate const double alpha = 1; const double beta = 2.0; const double kappa = -2.0; int MP = 2; int DP = 5; int CP = 0; int type = CV_64F; Mat processNoiseCov = Mat::zeros( DP, DP, type ); processNoiseCov.at(0, 0) = 1e-14; processNoiseCov.at(1, 1) = 1e-14; processNoiseCov.at(2, 2) = 2.4065 * 1e-5; processNoiseCov.at(3, 3) = 2.4065 * 1e-5; processNoiseCov.at(4, 4) = 1e-6; Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type ); sqrt( processNoiseCov, processNoiseCovSqrt ); Mat measurementNoiseCov = Mat::zeros( MP, MP, type ); measurementNoiseCov.at(0, 0) = 1e-3*1e-3; measurementNoiseCov.at(1, 1) = 0.13*0.13; Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type ); sqrt( measurementNoiseCov, measurementNoiseCovSqrt ); RNG rng( 117 ); Mat state( DP, 1, type ); state.at(0, 0) = 6500.4; state.at(1, 0) = 349.14; state.at(2, 0) = -1.8093; state.at(3, 0) = -6.7967; state.at(4, 0) = 0.6932; Mat initState = state.clone(); initState.at(4, 0) = 0.0; Mat P = 1e-6 * Mat::eye( DP, DP, type ); P.at(4, 4) = 1.0; Mat measurement( MP, 1, type ); Mat q( DP, 1, type ); Mat r( MP, 1, type ); Ptr model( new BallisticModel() ); AugmentedUnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model ); params.stateInit = initState.clone(); params.errorCovInit = P.clone(); params.measurementNoiseCov = measurementNoiseCov.clone(); params.processNoiseCov = processNoiseCov.clone(); params.alpha = alpha; params.beta = beta; params.k = kappa; Ptr augmentedUncsentedKalmanFilter = createAugmentedUnscentedKalmanFilter(params); Mat correctStateUKF( DP, 1, type ); Mat u = Mat::zeros( DP, 1, type ); for (int i = 0; istateConversionFunction(state, u, q, state); model->measurementFunction(state, r, measurement); augmentedUncsentedKalmanFilter->predict(); correctStateUKF = augmentedUncsentedKalmanFilter->correct( measurement ); } double landing_y = correctStateUKF.at(1, 0); ASSERT_NEAR(landing_coordinate, landing_y, abs_error); } TEST(DISABLED_AUKF, DISABLED_br_mean_squared_error) { const double velocity_treshold = 0.004; const double state_treshold = 0.04; const int nIterations = 4000; // number of iterations before landing const double alpha = 1; const double beta = 2.0; const double kappa = -2.0; int MP = 2; int DP = 5; int CP = 0; int type = CV_64F; Mat processNoiseCov = Mat::zeros( DP, DP, type ); processNoiseCov.at(0, 0) = 1e-14; processNoiseCov.at(1, 1) = 1e-14; processNoiseCov.at(2, 2) = 2.4065 * 1e-5; processNoiseCov.at(3, 3) = 2.4065 * 1e-5; processNoiseCov.at(4, 4) = 1e-6; Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type ); sqrt( processNoiseCov, processNoiseCovSqrt ); Mat measurementNoiseCov = Mat::zeros( MP, MP, type ); measurementNoiseCov.at(0, 0) = 1e-3*1e-3; measurementNoiseCov.at(1, 1) = 0.13*0.13; Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type ); sqrt( measurementNoiseCov, measurementNoiseCovSqrt ); RNG rng( 464 ); Mat state( DP, 1, type ); state.at(0, 0) = 6500.4; state.at(1, 0) = 349.14; state.at(2, 0) = -1.8093; state.at(3, 0) = -6.7967; state.at(4, 0) = 0.6932; Mat initState = state.clone(); Mat initStateKF = state.clone(); initStateKF.at(4, 0) = 0.0; Mat P = 1e-6 * Mat::eye( DP, DP, type ); P.at(4, 4) = 1.0; Mat measurement( MP, 1, type ); Mat q( DP, 1, type); Mat r( MP, 1, type); Ptr model( new BallisticModel() ); AugmentedUnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model ); params.stateInit = initStateKF.clone(); params.errorCovInit = P.clone(); params.measurementNoiseCov = measurementNoiseCov.clone(); params.processNoiseCov = processNoiseCov.clone(); params.alpha = alpha; params.beta = beta; params.k = kappa; Mat predictStateUKF( DP, 1, type ); Mat correctStateUKF( DP, 1, type ); Mat errors = Mat::zeros( nIterations, 4, type ); Mat u = Mat::zeros( DP, 1, type ); for (int j = 0; j<100; j++) { cv::Ptr augmentedUncsentedKalmanFilter = createAugmentedUnscentedKalmanFilter(params); state = initState.clone(); for (int i = 0; istateConversionFunction(state, u, q, state); model->measurementFunction(state, r, measurement); predictStateUKF = augmentedUncsentedKalmanFilter->predict(); correctStateUKF = augmentedUncsentedKalmanFilter->correct( measurement ); Mat errorUKF = state - correctStateUKF; for (int l = 0; l<4; l++) errors.at(i, l) += pow( errorUKF.at(l, 0), 2.0 ); } } errors = errors/100.0; sqrt( errors, errors ); double max_x1 = cvtest::norm(errors.col(0), NORM_INF); double max_x2 = cvtest::norm(errors.col(1), NORM_INF); double max_x3 = cvtest::norm(errors.col(2), NORM_INF); double max_x4 = cvtest::norm(errors.col(3), NORM_INF); ASSERT_GE( state_treshold, max_x1 ); ASSERT_GE( state_treshold, max_x2 ); ASSERT_GE( velocity_treshold, max_x3 ); ASSERT_GE( velocity_treshold, max_x4 ); } // In this test Augmented Unscented Kalman Filter are applied to the univariate nonstationary growth model (UNGM). // This model was used in example from "Unscented Kalman filtering for additive noise case: Augmented vs. non-augmented" // by Yuanxin Wu and Dewen Hu. class UnivariateNonstationaryGrowthModel: public UkfSystemModel { public: void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1) { double x = x_k.at(0, 0); double n = u_k.at(0, 0); double q = v_k.at(0, 0); double u = u_k.at(0, 0); double x1 = 0.5*x + 25*( x/(x*x + 1) ) + 8*cos( 1.2*(n-1) ) + q + u; x_kplus1.at(0, 0) = x1; } void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k) { double x = x_k.at(0, 0); double r = n_k.at(0, 0); double y = x*x/20.0 + r; z_k.at(0, 0) = y; } }; TEST(AUKF, DISABLED_ungm_mean_squared_error) { const double alpha = 1.5; const double beta = 2.0; const double kappa = 0.0; const double mse_treshold = 0.05; const int nIterations = 500; // number of observed iterations int MP = 1; int DP = 1; int CP = 0; int type = CV_64F; Ptr model( new UnivariateNonstationaryGrowthModel() ); AugmentedUnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model ); Mat processNoiseCov = Mat::zeros( DP, DP, type ); processNoiseCov.at(0, 0) = 1.0; Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type ); sqrt( processNoiseCov, processNoiseCovSqrt ); Mat measurementNoiseCov = Mat::zeros( MP, MP, type ); measurementNoiseCov.at(0, 0) = 1.0; Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type ); sqrt( measurementNoiseCov, measurementNoiseCovSqrt ); Mat P = Mat::eye( DP, DP, type ); Mat state( DP, 1, type ); state.at(0, 0) = 0.1; Mat initState = state.clone(); initState.at(0, 0) = 0.0; params.errorCovInit = P; params.measurementNoiseCov = measurementNoiseCov; params.processNoiseCov = processNoiseCov; params.stateInit = initState.clone(); params.alpha = alpha; params.beta = beta; params.k = kappa; Mat correctStateAUKF( DP, 1, type ); Mat measurement( MP, 1, type ); Mat exactMeasurement( MP, 1, type ); Mat q( DP, 1, type ); Mat r( MP, 1, type ); Mat u( DP, 1, type ); Mat zero = Mat::zeros( MP, 1, type ); RNG rng( 216 ); double average_error = 0.0; for (int j = 0; j<1000; j++) { cv::Ptr augmentedUncsentedKalmanFilter = createAugmentedUnscentedKalmanFilter( params ); state = params.stateInit.clone(); double mse = 0.0; for (int i = 0; i(0, 0) = (double)i; model->stateConversionFunction(state, u, q, state); model->measurementFunction(state, zero, exactMeasurement); model->measurementFunction(state, r, measurement); augmentedUncsentedKalmanFilter->predict( u ); correctStateAUKF = augmentedUncsentedKalmanFilter->correct( measurement ); mse += pow( state.at(0, 0) - correctStateAUKF.at(0, 0), 2.0 ); } mse /= nIterations; average_error += mse; } average_error /= 1000.0; ASSERT_GE( mse_treshold, average_error ); } }} // namespace