// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" namespace opencv_test { namespace { TEST (TextDetectionSWT, accuracy_light_on_dark) { const string dataPath = cvtest::findDataFile("cv/mser/mser_test.png"); Mat image = imread(dataPath, IMREAD_COLOR); vector components; detectTextSWT(image, components, false); /* all 5 letter candidates should be identified (R9888) */ EXPECT_EQ(5u, components.size()); } TEST (TextDetectionSWT, accuracy_dark_on_light) { const string dataPath = cvtest::findDataFile("cv/mser/mser_test2.png"); Mat image = imread(dataPath, IMREAD_COLOR); vector components; detectTextSWT(image, components, true); /* all 3 letter candidates should be identified 2, 5, 8 */ EXPECT_EQ(3u, components.size()); } TEST (TextDetectionSWT, accuracy_handwriting) { const string dataPath = cvtest::findDataFile("cv/cloning/Mixed_Cloning/source1.png"); Mat image = imread(dataPath, IMREAD_COLOR); vector components; detectTextSWT(image, components, true); /* Handwritten Text is generally more difficult to detect using SWT algorithm due to high variation in stroke width. */ EXPECT_LT(11u, components.size()); /* Although the text contains 15 characters, the current implementation of algorithm outputs 14, including three wrong guesses. So, we check at least 11 (14 - 3) letters are detected.*/ } TEST (TextDetectionSWT, accuracy_chaining) { const string dataPath = cvtest::findDataFile("cv/mser/mser_test.png"); Mat image = imread(dataPath, IMREAD_COLOR); vector components; Mat out(image.size(), CV_8UC3); vector chains; detectTextSWT(image, components, false, out, chains); Rect chain = chains[0]; /* Since the word is already segmented and cropped, most of the area is covered by text. It confirms that chaining works. */ EXPECT_LT(0.95 * image.total(), (double)chain.area()); } }} // namespace