#!/usr/bin/python import sys import os import cv2 as cv import numpy as np print('\ntextdetection.py') print(' A demo script of the Extremal Region Filter algorithm described in:') print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n') if (len(sys.argv) < 2): print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n') quit() pathname = os.path.dirname(sys.argv[0]) img = cv.imread(str(sys.argv[1])) # for visualization vis = img.copy() # Extract channels to be processed individually channels = list(cv.text.computeNMChannels(img)) # Append negative channels to detect ER- (bright regions over dark background) cn = len(channels)-1 for c in range(0,cn): channels.append(255-channels[c]) # Apply the default cascade classifier to each independent channel (could be done in parallel) erc1 = cv.text.loadClassifierNM1('trained_classifierNM1.xml') er1 = cv.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1) erc2 = cv.text.loadClassifierNM2('trained_classifierNM2.xml') er2 = cv.text.createERFilterNM2(erc2,0.5) print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...") print(" (...) this may take a while (...)") for channel in channels: regions = cv.text.detectRegions(channel,er1,er2) rects = cv.text.erGrouping(img,channel,[r.tolist() for r in regions]) #rects = cv.text.erGrouping(img,channel,[x.tolist() for x in regions], cv.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5) #Visualization for rect in rects: cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2) cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1) #Visualization cv.imshow("Text detection result", vis) cv.waitKey(0)