/* * textdetection.cpp * * A demo program of the Extremal Region Filter algorithm described in * Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 * * Created on: Sep 23, 2013 * Author: Lluis Gomez i Bigorda */ #include "opencv2/text.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include #include #include using namespace std; using namespace cv; using namespace cv::text; void show_help_and_exit(const char *cmd); void groups_draw(Mat &src, vector &groups); void er_show(vector &channels, vector > ®ions); int main(int argc, const char * argv[]) { cout << endl << argv[0] << endl << endl; cout << "Demo program of the Extremal Region Filter algorithm described in " << endl; cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl; if (argc < 2) show_help_and_exit(argv[0]); Mat src = imread(argv[1]); // Extract channels to be processed individually vector channels; computeNMChannels(src, channels); int cn = (int)channels.size(); // Append negative channels to detect ER- (bright regions over dark background) for (int c = 0; c < cn-1; c++) channels.push_back(255-channels[c]); // Create ERFilter objects with the 1st and 2nd stage default classifiers Ptr er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),16,0.00015f,0.13f,0.2f,true,0.1f); Ptr er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5); vector > regions(channels.size()); // Apply the default cascade classifier to each independent channel (could be done in parallel) cout << "Extracting Class Specific Extremal Regions from " << (int)channels.size() << " channels ..." << endl; cout << " (...) this may take a while (...)" << endl << endl; for (int c=0; c<(int)channels.size(); c++) { er_filter1->run(channels[c], regions[c]); er_filter2->run(channels[c], regions[c]); } // Detect character groups cout << "Grouping extracted ERs ... "; vector< vector > region_groups; vector groups_boxes; erGrouping(src, channels, regions, region_groups, groups_boxes, ERGROUPING_ORIENTATION_HORIZ); //erGrouping(src, channels, regions, region_groups, groups_boxes, ERGROUPING_ORIENTATION_ANY, "./trained_classifier_erGrouping.xml", 0.5); // draw groups groups_draw(src, groups_boxes); imshow("grouping",src); cout << "Done!" << endl << endl; cout << "Press 'space' to show the extracted Extremal Regions, any other key to exit." << endl << endl; if ((waitKey()&0xff) == ' ') er_show(channels,regions); // memory clean-up er_filter1.release(); er_filter2.release(); regions.clear(); if (!groups_boxes.empty()) { groups_boxes.clear(); } } // helper functions void show_help_and_exit(const char *cmd) { cout << " Usage: " << cmd << " " << endl; cout << " Default classifier files (trained_classifierNM*.xml) must be in current directory" << endl << endl; exit(-1); } void groups_draw(Mat &src, vector &groups) { for (int i=(int)groups.size()-1; i>=0; i--) { if (src.type() == CV_8UC3) rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 0, 255, 255 ), 3, 8 ); else rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 255 ), 3, 8 ); } } void er_show(vector &channels, vector > ®ions) { for (int c=0; c<(int)channels.size(); c++) { Mat dst = Mat::zeros(channels[0].rows+2,channels[0].cols+2,CV_8UC1); for (int r=0; r<(int)regions[c].size(); r++) { ERStat er = regions[c][r]; if (er.parent != NULL) // deprecate the root region { int newMaskVal = 255; int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; floodFill(channels[c],dst,Point(er.pixel%channels[c].cols,er.pixel/channels[c].cols), Scalar(255),0,Scalar(er.level),Scalar(0),flags); } } char buff[20]; char *buff_ptr = buff; sprintf(buff, "channel %d", c); imshow(buff_ptr, dst); } waitKey(-1); }