/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2015, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include #include #include #include #include // (if you did not build the opencv_viz module, you will only see the disparity images) #ifdef HAVE_OPENCV_VIZ #include #endif using namespace std; using namespace cv; static const char* keys = { "{@images_list | | Image list where the captured pattern images are saved}" "{@calib_param_path | | Calibration_parameters }" "{@proj_width | | The projector width used to acquire the pattern }" "{@proj_height | | The projector height used to acquire the pattern}" "{@white_thresh | | The white threshold height (optional)}" "{@black_thresh | | The black threshold (optional)}" }; static void help() { cout << "\nThis example shows how to use the \"Structured Light module\" to decode a previously acquired gray code pattern, generating a pointcloud" "\nCall:\n" "./example_structured_light_pointcloud \n" << endl; } static bool readStringList( const string& filename, vector& l ) { l.resize( 0 ); FileStorage fs( filename, FileStorage::READ ); if( !fs.isOpened() ) { cerr << "failed to open " << filename << endl; return false; } FileNode n = fs.getFirstTopLevelNode(); if( n.type() != FileNode::SEQ ) { cerr << "cam 1 images are not a sequence! FAIL" << endl; return false; } FileNodeIterator it = n.begin(), it_end = n.end(); for( ; it != it_end; ++it ) { l.push_back( ( string ) *it ); } n = fs["cam2"]; if( n.type() != FileNode::SEQ ) { cerr << "cam 2 images are not a sequence! FAIL" << endl; return false; } it = n.begin(), it_end = n.end(); for( ; it != it_end; ++it ) { l.push_back( ( string ) *it ); } if( l.size() % 2 != 0 ) { cout << "Error: the image list contains odd (non-even) number of elements\n"; return false; } return true; } int main( int argc, char** argv ) { structured_light::GrayCodePattern::Params params; CommandLineParser parser( argc, argv, keys ); String images_file = parser.get( 0 ); String calib_file = parser.get( 1 ); params.width = parser.get( 2 ); params.height = parser.get( 3 ); if( images_file.empty() || calib_file.empty() || params.width < 1 || params.height < 1 || argc < 5 || argc > 7 ) { help(); return -1; } // Set up GraycodePattern with params Ptr graycode = structured_light::GrayCodePattern::create( params ); size_t white_thresh = 0; size_t black_thresh = 0; if( argc == 7 ) { // If passed, setting the white and black threshold, otherwise using default values white_thresh = parser.get( 4 ); black_thresh = parser.get( 5 ); graycode->setWhiteThreshold( white_thresh ); graycode->setBlackThreshold( black_thresh ); } vector imagelist; bool ok = readStringList( images_file, imagelist ); if( !ok || imagelist.empty() ) { cout << "can not open " << images_file << " or the string list is empty" << endl; help(); return -1; } FileStorage fs( calib_file, FileStorage::READ ); if( !fs.isOpened() ) { cout << "Failed to open Calibration Data File." << endl; help(); return -1; } // Loading calibration parameters Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T; fs["cam1_intrinsics"] >> cam1intrinsics; fs["cam2_intrinsics"] >> cam2intrinsics; fs["cam1_distorsion"] >> cam1distCoeffs; fs["cam2_distorsion"] >> cam2distCoeffs; fs["R"] >> R; fs["T"] >> T; cout << "cam1intrinsics" << endl << cam1intrinsics << endl; cout << "cam1distCoeffs" << endl << cam1distCoeffs << endl; cout << "cam2intrinsics" << endl << cam2intrinsics << endl; cout << "cam2distCoeffs" << endl << cam2distCoeffs << endl; cout << "T" << endl << T << endl << "R" << endl << R << endl; if( (!R.data) || (!T.data) || (!cam1intrinsics.data) || (!cam2intrinsics.data) || (!cam1distCoeffs.data) || (!cam2distCoeffs.data) ) { cout << "Failed to load cameras calibration parameters" << endl; help(); return -1; } size_t numberOfPatternImages = graycode->getNumberOfPatternImages(); vector > captured_pattern; captured_pattern.resize( 2 ); captured_pattern[0].resize( numberOfPatternImages ); captured_pattern[1].resize( numberOfPatternImages ); Mat color = imread( imagelist[numberOfPatternImages], IMREAD_COLOR ); Size imagesSize = color.size(); // Stereo rectify cout << "Rectifying images..." << endl; Mat R1, R2, P1, P2, Q; Rect validRoi[2]; stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0, -1, imagesSize, &validRoi[0], &validRoi[1] ); Mat map1x, map1y, map2x, map2y; initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y ); initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y ); // Loading pattern images for( size_t i = 0; i < numberOfPatternImages; i++ ) { captured_pattern[0][i] = imread( imagelist[i], IMREAD_GRAYSCALE ); captured_pattern[1][i] = imread( imagelist[i + numberOfPatternImages + 2], IMREAD_GRAYSCALE ); if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) ) { cout << "Empty images" << endl; help(); return -1; } remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); } cout << "done" << endl; vector blackImages; vector whiteImages; blackImages.resize( 2 ); whiteImages.resize( 2 ); // Loading images (all white + all black) needed for shadows computation cvtColor( color, whiteImages[0], COLOR_RGB2GRAY ); whiteImages[1] = imread( imagelist[2 * numberOfPatternImages + 2], IMREAD_GRAYSCALE ); blackImages[0] = imread( imagelist[numberOfPatternImages + 1], IMREAD_GRAYSCALE ); blackImages[1] = imread( imagelist[2 * numberOfPatternImages + 2 + 1], IMREAD_GRAYSCALE ); remap( color, color, map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); cout << endl << "Decoding pattern ..." << endl; Mat disparityMap; bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages, structured_light::DECODE_3D_UNDERWORLD ); if( decoded ) { cout << endl << "pattern decoded" << endl; // To better visualize the result, apply a colormap to the computed disparity double min; double max; minMaxIdx(disparityMap, &min, &max); Mat cm_disp, scaledDisparityMap; cout << "disp min " << min << endl << "disp max " << max << endl; convertScaleAbs( disparityMap, scaledDisparityMap, 255 / ( max - min ) ); applyColorMap( scaledDisparityMap, cm_disp, COLORMAP_JET ); // Show the result resize( cm_disp, cm_disp, Size( 640, 480 ), 0, 0, INTER_LINEAR_EXACT ); imshow( "cm disparity m", cm_disp ); // Compute the point cloud Mat pointcloud; disparityMap.convertTo( disparityMap, CV_32FC1 ); reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 ); // Compute a mask to remove background Mat dst, thresholded_disp; threshold( scaledDisparityMap, thresholded_disp, 0, 255, THRESH_OTSU + THRESH_BINARY ); resize( thresholded_disp, dst, Size( 640, 480 ), 0, 0, INTER_LINEAR_EXACT ); imshow( "threshold disp otsu", dst ); #ifdef HAVE_OPENCV_VIZ // Apply the mask to the point cloud Mat pointcloud_tresh, color_tresh; pointcloud.copyTo( pointcloud_tresh, thresholded_disp ); color.copyTo( color_tresh, thresholded_disp ); // Show the point cloud on viz viz::Viz3d myWindow( "Point cloud with color" ); myWindow.setBackgroundMeshLab(); myWindow.showWidget( "coosys", viz::WCoordinateSystem() ); myWindow.showWidget( "pointcloud", viz::WCloud( pointcloud_tresh, color_tresh ) ); myWindow.showWidget( "text2d", viz::WText( "Point cloud", Point(20, 20), 20, viz::Color::green() ) ); myWindow.spin(); #endif // HAVE_OPENCV_VIZ } waitKey(); return 0; }