import numpy as np import cv2 as cv # aruco config adict = cv.aruco.Dictionary_get(cv.aruco.DICT_4X4_50) cv.imshow("marker", cv.aruco.drawMarker(adict, 0, 400)) marker_len = 5 # rapid config obj_points = np.float32([[-0.5, 0.5, 0], [0.5, 0.5, 0], [0.5, -0.5, 0], [-0.5, -0.5, 0]]) * marker_len tris = np.int32([[0, 2, 1], [0, 3, 2]]) # note CCW order for culling line_len = 10 # random calibration data. your mileage may vary. imsize = (800, 600) K = cv.getDefaultNewCameraMatrix(np.diag([800, 800, 1]), imsize, True) # video capture cap = cv.VideoCapture(0) cap.set(cv.CAP_PROP_FRAME_WIDTH, imsize[0]) cap.set(cv.CAP_PROP_FRAME_HEIGHT, imsize[1]) rot, trans = None, None while cv.waitKey(1) != 27: img = cap.read()[1] # detection with aruco if rot is None: corners, ids = cv.aruco.detectMarkers(img, adict)[:2] if ids is not None: rvecs, tvecs = cv.aruco.estimatePoseSingleMarkers(corners, marker_len, K, None)[:2] rot, trans = rvecs[0].ravel(), tvecs[0].ravel() # tracking and refinement with rapid if rot is not None: for i in range(5): # multiple iterations ratio, rot, trans = cv.rapid.rapid(img, 40, line_len, obj_points, tris, K, rot, trans)[:3] if ratio < 0.8: # bad quality, force re-detect rot, trans = None, None break # drawing cv.putText(img, "detecting" if rot is None else "tracking", (0, 20), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255)) if rot is not None: cv.drawFrameAxes(img, K, None, rot, trans, marker_len) cv.imshow("tracking", img)