/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2014, Biagio Montesano, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { class CV_BinaryDescriptorMatcherTest : public cvtest::BaseTest { public: CV_BinaryDescriptorMatcherTest( float _badPart ) : badPart( _badPart ) { dmatcher = BinaryDescriptorMatcher::createBinaryDescriptorMatcher(); } protected: static const int dim = 32; static const int queryDescCount = 300; // must be even number because we split train data in some cases in two static const int countFactor = 4; // do not change it const float badPart; virtual void run( int ); void generateData( Mat& query, Mat& train ); uchar invertSingleBits( uchar dividend_char, int numBits ); void emptyDataTest(); void matchTest( const Mat& query, const Mat& train ); void knnMatchTest( const Mat& query, const Mat& train ); void radiusMatchTest( const Mat& query, const Mat& train ); std::string name; Ptr dmatcher; private: CV_BinaryDescriptorMatcherTest& operator=( const CV_BinaryDescriptorMatcherTest& ) { return *this; } }; /* invert numBits bits in input char */ uchar CV_BinaryDescriptorMatcherTest::invertSingleBits( uchar dividend_char, int numBits ) { std::vector bin_vector; long dividend; long bin_num; /* convert input char to a long */ dividend = (long) dividend_char; /*if a 0 has been obtained, just generate a 8-bit long vector of zeros */ if( dividend == 0 ) bin_vector = std::vector( 8, 0 ); /* else, apply classic decimal to binary conversion */ else { while ( dividend >= 1 ) { bin_num = dividend % 2; dividend /= 2; bin_vector.push_back( bin_num ); } } /* ensure that binary vector always has length 8 */ if( bin_vector.size() < 8 ) { std::vector zeros( 8 - bin_vector.size(), 0 ); bin_vector.insert( bin_vector.end(), zeros.begin(), zeros.end() ); } /* invert numBits bits */ for ( int index = 0; index < numBits; index++ ) { if( bin_vector[index] == 0 ) bin_vector[index] = 1; else bin_vector[index] = 0; } /* reconvert to decimal */ uchar result = 0; for ( int i = (int) bin_vector.size() - 1; i >= 0; i-- ) result += (uchar) ( bin_vector[i] * ( 1 << i ) ); return result; } void CV_BinaryDescriptorMatcherTest::emptyDataTest() { Mat queryDescriptors, trainDescriptors, mask; std::vector trainDescriptorCollection, masks; std::vector matches; std::vector > vmatches; try { dmatcher->match( queryDescriptors, trainDescriptors, matches, mask ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->add( trainDescriptorCollection ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->match( queryDescriptors, matches, masks ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } void CV_BinaryDescriptorMatcherTest::generateData( Mat& query, Mat& train ) { RNG& rng = theRNG(); /* Generate query descriptors randomly. Descriptor vector elements are binary values. */ Mat buf( queryDescCount, dim, CV_8UC1 ); rng.fill( buf, RNG::UNIFORM, Scalar( 0 ), Scalar( 255 ) ); buf.convertTo( query, CV_8UC1 ); for ( int i = 0; i < query.rows; i++ ) { for ( int j = 0; j < countFactor; j++ ) { train.push_back( query.row( i ) ); int randCol = rand() % 32; uchar u = query.at( i, randCol ); uchar modified_u = invertSingleBits( u, j + 1 ); train.at( i * countFactor + j, randCol ) = modified_u; } } } void CV_BinaryDescriptorMatcherTest::matchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of match() { std::vector matches; dmatcher->match( query, train, matches ); if( (int) matches.size() != queryDescCount ) { ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for ( size_t i = 0; i < matches.size(); i++ ) { DMatch& match = matches[i]; if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor ) || ( match.imgIdx != 0 ) ) badCount++; } if( (float) badCount > (float) queryDescCount * badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n", (float) badCount / (float) queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // test const version of match() for the same query and test descriptors { std::vector matches; dmatcher->match( query, query, matches ); if( (int) matches.size() != query.rows ) { ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function for the same query and test descriptors (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { for ( size_t i = 0; i < matches.size(); i++ ) { DMatch& match = matches[i]; if( match.queryIdx != (int) i || match.trainIdx != (int) i || std::abs( match.distance ) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1).\n", i, match.queryIdx, match.trainIdx, match.distance ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } } // test version of match() with add() { dmatcher->clear(); std::vector matches; // make add() twice to test such case dmatcher->add( std::vector( 1, train.rowRange( 0, train.rows / 2 ) ) ); dmatcher->add( std::vector( 1, train.rowRange( train.rows / 2, train.rows ) ) ); // prepare masks (make first nearest match illegal) std::vector masks( 2 ); for ( int mi = 0; mi < 2; mi++ ) masks[mi] = Mat::ones( query.rows, 1/*train.rows / 2*/, CV_8UC1 ); dmatcher->match( query, matches, masks ); if( (int) matches.size() != queryDescCount ) { ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for ( size_t i = 0; i < matches.size(); i++ ) { DMatch& match = matches[i]; if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor /*+ shift*/) || ( match.imgIdx > 1 ) ) badCount++; } if( (float) badCount > (float) queryDescCount * badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n", (float) badCount / (float) queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } } void CV_BinaryDescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of knnMatch() { const int knn = 3; std::vector > matches; dmatcher->knnMatch( query, train, matches, knn ); if( (int) matches.size() != queryDescCount ) { ts->printf( cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for ( size_t i = 0; i < matches.size(); i++ ) { if( (int) matches[i].size() != knn ) badCount++; else { int localBadCount = 0; for ( int k = 0; k < knn; k++ ) { DMatch& match = matches[i][k]; if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) ) localBadCount++; } badCount += localBadCount > 0 ? 1 : 0; } } if( (float) badCount > (float) queryDescCount * badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n", (float) badCount / (float) queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // // test version of knnMatch() with add() { const int knn = 2; std::vector > matches; // make add() twice to test such case dmatcher->add( std::vector( 1, train.rowRange( 0, train.rows / 2 ) ) ); dmatcher->add( std::vector( 1, train.rowRange( train.rows / 2, train.rows ) ) ); // prepare masks (make first nearest match illegal) std::vector masks( 2 ); for ( int mi = 0; mi < 2; mi++ ) { masks[mi] = Mat::ones( query.rows, 1, CV_8UC1 ); } dmatcher->knnMatch( query, matches, knn, masks ); if( (int) matches.size() != queryDescCount ) { ts->printf( cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for ( size_t i = 0; i < matches.size(); i++ ) { if( (int) matches[i].size() != knn ) badCount++; else { int localBadCount = 0; for ( int k = 0; k < knn; k++ ) { DMatch& match = matches[i][k]; { if( i < queryDescCount / 2 ) { if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) ) localBadCount++; } else { if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 1 ) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } if( (float) badCount > (float) queryDescCount * badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n", (float) badCount / (float) queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } } void CV_BinaryDescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of match() { const float radius = 1; std::vector > matches; dmatcher->radiusMatch( query, train, matches, radius ); if( (int) matches.size() != queryDescCount ) { ts->printf( cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for ( size_t i = 0; i < matches.size(); i++ ) { if( (int) matches[i].size() != 1 ) { badCount++; } else { DMatch& match = matches[i][0]; if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor ) || ( match.imgIdx != 0 ) ) badCount++; } } if( (float) badCount > (float) queryDescCount * badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n", (float) badCount / (float) queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } { const float radius = 3; std::vector > matches; // make add() twice to test such case dmatcher->add( std::vector( 1, train.rowRange( 0, train.rows / 2 ) ) ); dmatcher->add( std::vector( 1, train.rowRange( train.rows / 2, train.rows ) ) ); // prepare masks std::vector masks( 2 ); for ( int mi = 0; mi < 2; mi++ ) masks[mi] = Mat::ones( query.rows, 1, CV_8UC1 ); dmatcher->radiusMatch( query, matches, radius, masks ); //int curRes = cvtest::TS::OK; if( (int) matches.size() != queryDescCount ) { ts->printf( cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } int badCount = 0; for ( size_t i = 0; i < matches.size(); i++ ) { if( (int) matches[i].size() != radius ) badCount++; else { int localBadCount = 0; for ( int k = 0; k < radius; k++ ) { DMatch& match = matches[i][k]; { if( i < queryDescCount / 2 ) { if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) ) localBadCount++; } else { if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 1 ) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } if( (float) badCount > (float) queryDescCount * badPart ) { //curRes = cvtest::TS::FAIL_INVALID_OUTPUT; ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n", (float) badCount / (float) queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } void CV_BinaryDescriptorMatcherTest::run( int ) { Mat query, train; emptyDataTest(); generateData( query, train ); matchTest( query, train ); knnMatchTest( query, train ); radiusMatchTest( query, train ); } /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST( BinaryDescriptor_Matcher, regression) { CV_BinaryDescriptorMatcherTest test( 0.01f ); test.safe_run(); } }} // namespace