function IOU(boxA, boxB) xA = max(boxA[1], boxB[1]) yA = max(boxA[2], boxB[2]) xB = min(boxA[3], boxB[3]) yB = min(boxA[4], boxB[4]) interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) boxAArea = (boxA[3] - boxA[1] + 1) * (boxA[4] - boxA[2] + 1) boxBArea = (boxB[3] - boxB[1] + 1) * (boxB[4] - boxB[2] + 1) iou = interArea / float(boxAArea + boxBArea - interArea) return iou end const cv = OpenCV net = cv.dnn.DetectionModel(joinpath(ENV["OPENCV_TEST_DATA_PATH"], "dnn", "opencv_face_detector.pbtxt"),joinpath(ENV["OPENCV_TEST_DATA_PATH"], "dnn", "opencv_face_detector_uint8.pb")) size0 = 300 cv.dnn.setPreferableTarget(net, cv.dnn.DNN_TARGET_CPU) cv.dnn.setInputMean(net, (104, 177, 123)) cv.dnn.setInputScale(net, 1.) cv.dnn.setInputSize(net, size0, size0) img = OpenCV.imread(joinpath(test_dir, "cascadeandhog", "images", "mona-lisa.png")) classIds, confidences, boxes = cv.dnn.detect(net, img, confThreshold=0.5) box = (boxes[1].x, boxes[1].y, boxes[1].x+boxes[1].width, boxes[1].y+boxes[1].height) expected_rect = (185,101,129+185,169+101) @test IOU(box, expected_rect) > 0.8 print("dnn test passed\n")