from skimage import io, transform from multiprocessing.dummy import Pool as ThreadPool def rescale(root_new, root_old, img_path, ann_path, out_shape): try: img = io.imread(root_old+"/"+img_path) except Exception as E: print E h, w, _ = img.shape f_h, f_w = float(out_shape)/h, float(out_shape)/w trans_img = transform.rescale(img, (f_h, f_w)) num_objs = 0 with open(root_old+"/"+ann_path, 'r') as f: ann = f.readline() ann = ann.rstrip() ann = ann.split(' ') ann = [float(i) for i in ann] num_objs = len(ann) / 5 for idx in xrange(num_objs): ann[idx * 5 + 0] = int(f_w * ann[idx * 5 + 0]) ann[idx * 5 + 1] = int(f_h * ann[idx * 5 + 1]) ann[idx * 5 + 2] = int(f_w * ann[idx * 5 + 2]) ann[idx * 5 + 3] = int(f_h * ann[idx * 5 + 3]) # Write the new annotations to file with open(root_new+"/"+ann_path, 'w') as f_new: for val in ann: f_new.write(str(val)+' ') # Save the new image io.imwrite(root_new+"/"+img_path, trans_img) def preprocess(): source = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize/source.txt' root_old = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012' root_new = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize' out_shape = 416 with open(source, 'r') as src: lines = src.readlines() print 'Processing {} images and annotations'.format(len(lines)) for line in lines: line = line.rstrip() line = line.split(' ') img_path = line[0] ann_path = line[1] rescale(root_new, root_old, img_path, ann_path, out_shape) if __name__ == '__main__': preprocess()