# Solver for SqueezeNet Model test_iter: 1000 test_interval: 1000 base_lr: 0.03 display: 1 max_iter: 1500000 lr_policy: "step" gamma: 0.5 stepsize: 100000 momentum: 0.9 weight_decay: 0.0002 snapshot: 1000 snapshot_prefix: "snapshot" solver_mode: GPU net: "SqueezeNet_train_test.prototxt" random_seed: 42 average_loss: 80