/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Itseez Inc or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/datasets/fr_lfw.hpp" #include #include #include #include using namespace std; using namespace cv; using namespace cv::datasets; int main(int argc, const char *argv[]) { const char *keys = "{ help h usage ? | | show this message }" "{ path p |true| path to dataset (lfw2 folder) }" "{ train t |dev | train method: 'dev'(pairsDevTrain.txt) or 'split'(pairs.txt) }"; CommandLineParser parser(argc, argv, keys); string path(parser.get("path")); if (parser.has("help") || path=="true") { parser.printMessage(); return -1; } string trainMethod(parser.get("train")); // our trained threshold for "same": double threshold = 0; // load dataset Ptr dataset = FR_lfw::create(); dataset->load(path); unsigned int numSplits = dataset->getNumSplits(); printf("splits number: %u\n", numSplits); if (trainMethod == "dev") printf("train size: %u\n", (unsigned int)dataset->getTrain().size()); else printf("train size: %u\n", (numSplits-1) * (unsigned int)dataset->getTest().size()); printf("test size: %u\n", (unsigned int)dataset->getTest().size()); if (trainMethod == "dev") // train on personsDevTrain.txt { // collect average same-distances: double avg = 0; int count = 0; for (unsigned int i=0; igetTrain().size(); ++i) { FR_lfwObj *example = static_cast(dataset->getTrain()[i].get()); Mat a = imread(path+example->image1, IMREAD_GRAYSCALE); Mat b = imread(path+example->image2, IMREAD_GRAYSCALE); double dist = norm(a,b); if (example->same) { avg += dist; count ++; } } threshold = avg / count; } vector p; for (unsigned int j=0; j > &curr = dataset->getTest(j2); for (unsigned int i=0; i(curr[i].get()); Mat a = imread(path+example->image1, IMREAD_GRAYSCALE); Mat b = imread(path+example->image2, IMREAD_GRAYSCALE); double dist = norm(a,b); if (example->same) { avg += dist; count ++; } } } threshold = avg / count; } unsigned int incorrect = 0, correct = 0; vector < Ptr > &curr = dataset->getTest(j); for (unsigned int i=0; i(curr[i].get()); Mat a = imread(path+example->image1, IMREAD_GRAYSCALE); Mat b = imread(path+example->image2, IMREAD_GRAYSCALE); bool same = (norm(a,b) <= threshold); if (same == example->same) correct++; else incorrect++; } p.push_back(1.0*correct/(correct+incorrect)); printf("correct: %u, from: %u -> %f\n", correct, correct+incorrect, p.back()); } double mu = 0.0; for (vector::iterator it=p.begin(); it!=p.end(); ++it) { mu += *it; } mu /= p.size(); double sigma = 0.0; for (vector::iterator it=p.begin(); it!=p.end(); ++it) { sigma += (*it - mu)*(*it - mu); } sigma = sqrt(sigma/p.size()); double se = sigma/sqrt(double(p.size())); printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se); return 0; }