#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudafeatures2d_test(NewOpenCVTests): def setUp(self): super(cudafeatures2d_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_cudafeatures2d(self): npMat1 = self.get_sample("samples/data/right01.jpg") npMat2 = self.get_sample("samples/data/right02.jpg") cuMat1 = cv.cuda_GpuMat() cuMat2 = cv.cuda_GpuMat() cuMat1.upload(npMat1) cuMat2.upload(npMat2) cuMat1 = cv.cuda.cvtColor(cuMat1, cv.COLOR_RGB2GRAY) cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY) fast = cv.cuda_FastFeatureDetector.create() _kps = fast.detectAsync(cuMat1) orb = cv.cuda_ORB.create() _kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None) _kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None) self.assertTrue(len(orb.convert(_kps1)) == _kps1.size()[0]) self.assertTrue(len(orb.convert(_kps2)) == _kps2.size()[0]) bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING) matches = bf.match(descs1, descs2) self.assertGreater(len(matches), 0) matches = bf.knnMatch(descs1, descs2, 2) self.assertGreater(len(matches), 0) matches = bf.radiusMatch(descs1, descs2, 0.1) self.assertGreater(len(matches), 0) self.assertTrue(True) #It is sufficient that no exceptions have been there if __name__ == '__main__': NewOpenCVTests.bootstrap()