// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include namespace opencv_test { namespace { static string getDataDir() { return TS::ptr()->get_data_path(); } static string getLenaImagePath() { return getDataDir() + "shared/lena.png"; } // Simple synthetic illumination invariance test TEST(BackgroundSubtractor_LSBP, IlluminationInvariance) { RNG rng; Mat input(100, 100, CV_32FC3); rng.fill(input, RNG::UNIFORM, 0.0f, 0.1f); Mat lsv1, lsv2; cv::bgsegm::BackgroundSubtractorLSBPDesc::calcLocalSVDValues(lsv1, input); input *= 10; cv::bgsegm::BackgroundSubtractorLSBPDesc::calcLocalSVDValues(lsv2, input); ASSERT_LE(cv::norm(lsv1, lsv2), 0.04f); } TEST(BackgroundSubtractor_LSBP, Correctness) { Mat input(3, 3, CV_32FC3); float n = 0; for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) { input.at(i, j) = Point3f(n, n, n); ++n; } Mat lsv; bgsegm::BackgroundSubtractorLSBPDesc::calcLocalSVDValues(lsv, input); EXPECT_LE(std::abs(lsv.at(1, 1) - 0.0903614f), 0.001f); input = 1; bgsegm::BackgroundSubtractorLSBPDesc::calcLocalSVDValues(lsv, input); EXPECT_LE(std::abs(lsv.at(1, 1) - 0.0f), 0.001f); } TEST(BackgroundSubtractor_LSBP, Discrimination) { Point2i LSBPSamplePoints[32]; for (int i = 0; i < 32; ++i) { const double phi = i * CV_2PI / 32.0; LSBPSamplePoints[i] = Point2i(int(4 * std::cos(phi)), int(4 * std::sin(phi))); } Mat lena = imread(getLenaImagePath()); Mat lsv; lena.convertTo(lena, CV_32FC3); bgsegm::BackgroundSubtractorLSBPDesc::calcLocalSVDValues(lsv, lena); Scalar mean, var; meanStdDev(lsv, mean, var); EXPECT_GE(mean[0], 0.02); EXPECT_LE(mean[0], 0.04); EXPECT_GE(var[0], 0.03); Mat desc; bgsegm::BackgroundSubtractorLSBPDesc::computeFromLocalSVDValues(desc, lsv, LSBPSamplePoints); Size sz = desc.size(); std::set distinctive_elements; for (int i = 0; i < sz.height; ++i) for (int j = 0; j < sz.width; ++j) distinctive_elements.insert(desc.at(i, j)); EXPECT_GE(distinctive_elements.size(), 35000U); } static double scoreBitwiseReduce(const Mat& mask, const Mat& gtMask, uchar v1, uchar v2) { Mat result; cv::bitwise_and(mask == v1, gtMask == v2, result); return cv::countNonZero(result); } template static double evaluateBGSAlgorithm(Ptr bgs) { Mat background = imread(getDataDir() + "shared/fruits.png"); Mat object = imread(getDataDir() + "shared/baboon.png"); cv::resize(object, object, Size(100, 100), 0, 0, INTER_LINEAR_EXACT); Ptr generator = bgsegm::createSyntheticSequenceGenerator(background, object); double f1_mean = 0; unsigned total = 0; for (int frameNum = 1; frameNum <= 400; ++frameNum) { Mat frame, gtMask; generator->getNextFrame(frame, gtMask); Mat mask; bgs->apply(frame, mask); Size sz = frame.size(); EXPECT_EQ(sz, gtMask.size()); EXPECT_EQ(gtMask.size(), mask.size()); EXPECT_EQ(mask.type(), gtMask.type()); EXPECT_EQ(mask.type(), CV_8U); // We will give the algorithm some time for the proper background model inference. // Almost all background subtraction algorithms have a problem with cold start and require some time for background model initialization. // So we will not count first part of the frames in the score. if (frameNum > 300) { const double tp = scoreBitwiseReduce(mask, gtMask, 255, 255); const double fp = scoreBitwiseReduce(mask, gtMask, 255, 0); const double fn = scoreBitwiseReduce(mask, gtMask, 0, 255); if (tp + fn + fp > 0) { const double f1_score = 2.0 * tp / (2.0 * tp + fn + fp); f1_mean += f1_score; ++total; } } } f1_mean /= total; return f1_mean; } TEST(BackgroundSubtractor_LSBP, Accuracy) { EXPECT_GE(evaluateBGSAlgorithm(bgsegm::createBackgroundSubtractorGSOC()), 0.9); EXPECT_GE(evaluateBGSAlgorithm(bgsegm::createBackgroundSubtractorLSBP()), 0.25); } }} // namespace