import numpy as np import cv2 as cv import argparse parser = argparse.ArgumentParser(description='This sample demonstrates the meanshift algorithm. \ The example file can be downloaded from: \ https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4') parser.add_argument('image', type=str, help='path to image file') args = parser.parse_args() cap = cv.VideoCapture(args.image) # take first frame of the video ret,frame = cap.read() # setup initial location of window x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values track_window = (x, y, w, h) # set up the ROI for tracking roi = frame[y:y+h, x:x+w] hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV) mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX) # Setup the termination criteria, either 10 iteration or move by at least 1 pt term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret, frame = cap.read() if ret == True: hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1) # apply meanshift to get the new location ret, track_window = cv.meanShift(dst, track_window, term_crit) # Draw it on image x,y,w,h = track_window img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2) cv.imshow('img2',img2) k = cv.waitKey(30) & 0xff if k == 27: break else: break