/** * @file MatchTemplate_Demo.cpp * @brief Sample code to use the function MatchTemplate * @author OpenCV team */ #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include using namespace std; using namespace cv; //! [declare] /// Global Variables bool use_mask; Mat img; Mat templ; Mat mask; Mat result; const char* image_window = "Source Image"; const char* result_window = "Result window"; int match_method; int max_Trackbar = 5; //! [declare] /// Function Headers void MatchingMethod( int, void* ); /** * @function main */ int main( int argc, char** argv ) { if (argc < 3) { cout << "Not enough parameters" << endl; cout << "Usage:\n" << argv[0] << " []" << endl; return -1; } //! [load_image] /// Load image and template img = imread( argv[1], IMREAD_COLOR ); templ = imread( argv[2], IMREAD_COLOR ); if(argc > 3) { use_mask = true; mask = imread( argv[3], IMREAD_COLOR ); } if(img.empty() || templ.empty() || (use_mask && mask.empty())) { cout << "Can't read one of the images" << endl; return EXIT_FAILURE; } //! [load_image] //! [create_windows] /// Create windows namedWindow( image_window, WINDOW_AUTOSIZE ); namedWindow( result_window, WINDOW_AUTOSIZE ); //! [create_windows] //! [create_trackbar] /// Create Trackbar const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED"; createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); //! [create_trackbar] MatchingMethod( 0, 0 ); //! [wait_key] waitKey(0); return EXIT_SUCCESS; //! [wait_key] } /** * @function MatchingMethod * @brief Trackbar callback */ void MatchingMethod( int, void* ) { //! [copy_source] /// Source image to display Mat img_display; img.copyTo( img_display ); //! [copy_source] //! [create_result_matrix] /// Create the result matrix int result_cols = img.cols - templ.cols + 1; int result_rows = img.rows - templ.rows + 1; result.create( result_rows, result_cols, CV_32FC1 ); //! [create_result_matrix] //! [match_template] /// Do the Matching and Normalize bool method_accepts_mask = (TM_SQDIFF == match_method || match_method == TM_CCORR_NORMED); if (use_mask && method_accepts_mask) { matchTemplate( img, templ, result, match_method, mask); } else { matchTemplate( img, templ, result, match_method); } //! [match_template] //! [normalize] normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() ); //! [normalize] //! [best_match] /// Localizing the best match with minMaxLoc double minVal; double maxVal; Point minLoc; Point maxLoc; Point matchLoc; minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); //! [best_match] //! [match_loc] /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better if( match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED ) { matchLoc = minLoc; } else { matchLoc = maxLoc; } //! [match_loc] //! [imshow] /// Show me what you got rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); imshow( image_window, img_display ); imshow( result_window, result ); //! [imshow] return; }