// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include "opencv2/ximgproc/sparse_match_interpolator.hpp" namespace opencv_test { namespace { static string getDataDir() { return cvtest::TS::ptr()->get_data_path(); } const float FLOW_TAG_FLOAT = 202021.25f; Mat readOpticalFlow( const String& path ) { // CV_Assert(sizeof(float) == 4); //FIXME: ensure right sizes of int and float - here and in writeOpticalFlow() Mat_ flow; std::ifstream file(path.c_str(), std::ios_base::binary); if ( !file.good() ) return std::move(flow); // no file - return empty matrix float tag; file.read((char*) &tag, sizeof(float)); if ( tag != FLOW_TAG_FLOAT ) return std::move(flow); int width, height; file.read((char*) &width, 4); file.read((char*) &height, 4); flow.create(height, width); for ( int i = 0; i < flow.rows; ++i ) { for ( int j = 0; j < flow.cols; ++j ) { Point2f u; file.read((char*) &u.x, sizeof(float)); file.read((char*) &u.y, sizeof(float)); if ( !file.good() ) { flow.release(); return std::move(flow); } flow(i, j) = u; } } file.close(); return std::move(flow); } CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3) typedef tuple InterpolatorParams; typedef TestWithParam InterpolatorTest; TEST(InterpolatorTest, ReferenceAccuracy) { double MAX_DIF = 1.0; double MAX_MEAN_DIF = 1.0 / 256.0; string dir = getDataDir() + "cv/sparse_match_interpolator"; Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR); ASSERT_FALSE(src.empty()); Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo"); ASSERT_FALSE(ref_flow.empty()); std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str()); float from_x,from_y,to_x,to_y; vector from_points; vector to_points; while(file >> from_x >> from_y >> to_x >> to_y) { from_points.push_back(Point2f(from_x,from_y)); to_points.push_back(Point2f(to_x,to_y)); } Mat res_flow; Ptr interpolator = createEdgeAwareInterpolator(); interpolator->setK(128); interpolator->setSigma(0.05f); interpolator->setUsePostProcessing(true); interpolator->setFGSLambda(500.0f); interpolator->setFGSSigma(1.5f); interpolator->interpolate(src,from_points,Mat(),to_points,res_flow); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total()); Mat from_point_mat(from_points); Mat to_points_mat(to_points); interpolator->interpolate(src,from_point_mat,Mat(),to_points_mat,res_flow); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total()); } TEST(InterpolatorTest, RICReferenceAccuracy) { double MAX_DIF = 6.0; double MAX_MEAN_DIF = 60.0 / 256.0; string dir = getDataDir() + "cv/sparse_match_interpolator"; Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png", IMREAD_COLOR); ASSERT_FALSE(src.empty()); Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo"); ASSERT_FALSE(ref_flow.empty()); Mat src1 = imread(getDataDir() + "cv/optflow/RubberWhale2.png", IMREAD_COLOR); ASSERT_FALSE(src.empty()); std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str()); float from_x, from_y, to_x, to_y; vector from_points; vector to_points; while (file >> from_x >> from_y >> to_x >> to_y) { from_points.push_back(Point2f(from_x, from_y)); to_points.push_back(Point2f(to_x, to_y)); } Mat res_flow; Ptr interpolator = createRICInterpolator(); interpolator->setK(32); interpolator->setSuperpixelSize(15); interpolator->setSuperpixelNNCnt(150); interpolator->setSuperpixelRuler(15.f); interpolator->setSuperpixelMode(ximgproc::SLIC); interpolator->setAlpha(0.7f); interpolator->setModelIter(4); interpolator->setRefineModels(true); interpolator->setMaxFlow(250.f); interpolator->setUseVariationalRefinement(true); interpolator->setUseGlobalSmootherFilter(true); interpolator->setFGSLambda(500.f); interpolator->setFGSSigma(1.5f); interpolator->interpolate(src, from_points, src1, to_points, res_flow); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1), MAX_MEAN_DIF*res_flow.total()); Mat from_point_mat(from_points); Mat to_points_mat(to_points); interpolator->interpolate(src, from_point_mat, src1, to_points_mat, res_flow); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total()); } TEST_P(InterpolatorTest, MultiThreadReproducibility) { if (cv::getNumberOfCPUs() == 1) return; double MAX_DIF = 1.0; double MAX_MEAN_DIF = 1.0 / 256.0; int loopsCount = 2; RNG rng(0); InterpolatorParams params = GetParam(); Size size = get<0>(params); int guideType = get<1>(params); Mat from(size, guideType); randu(from, 0, 255); int num_matches = rng.uniform(5,SHRT_MAX-1); vector from_points; vector to_points; for(int i=0;i interpolator = createEdgeAwareInterpolator(); interpolator->setK(K); interpolator->setSigma(sigma); interpolator->setUsePostProcessing(true); interpolator->setFGSLambda(FGSlambda); interpolator->setFGSSigma(FGSsigma); cv::setNumThreads(nThreads); Mat resMultiThread; interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread); cv::setNumThreads(1); Mat resSingleThread; interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total()); } } INSTANTIATE_TEST_CASE_P(FullSet,InterpolatorTest, Combine(Values(szODD,szVGA), GuideTypes::all())); }} // namespace