// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Tencent is pleased to support the open source community by making WeChat QRCode available. // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. #include "test_precomp.hpp" namespace opencv_test { namespace { std::string qrcode_images_name[] = { "version_1_down.jpg", /*"version_1_left.jpg", "version_1_right.jpg", "version_1_up.jpg",*/ "version_1_top.jpg", /*"version_2_down.jpg",*/ "version_2_left.jpg", /*"version_2_right.jpg",*/ "version_2_up.jpg", "version_2_top.jpg", "version_3_down.jpg", "version_3_left.jpg", /*"version_3_right.jpg",*/ "version_3_up.jpg", "version_3_top.jpg", "version_4_down.jpg", "version_4_left.jpg", /*"version_4_right.jpg",*/ "version_4_up.jpg", "version_4_top.jpg", "version_5_down.jpg", "version_5_left.jpg", /*"version_5_right.jpg",*/ "version_5_up.jpg", "version_5_top.jpg", "russian.jpg", "kanji.jpg", /*"link_github_ocv.jpg",*/ "link_ocv.jpg", "link_wiki_cv.jpg"}; std::string qrcode_images_close[] = {/*"close_1.png",*/ "close_2.png", "close_3.png", "close_4.png", "close_5.png"}; std::string qrcode_images_monitor[] = {"monitor_1.png", "monitor_2.png", "monitor_3.png", "monitor_4.png", "monitor_5.png"}; std::string qrcode_images_curved[] = {"curved_1.jpg", /*"curved_2.jpg", "curved_3.jpg", "curved_4.jpg",*/ "curved_5.jpg", "curved_6.jpg", /*"curved_7.jpg", "curved_8.jpg"*/}; // std::string qrcode_images_multiple[] = {"2_qrcodes.png", "3_close_qrcodes.png", "3_qrcodes.png", // "4_qrcodes.png", "5_qrcodes.png", "6_qrcodes.png", // "7_qrcodes.png", "8_close_qrcodes.png"}; typedef testing::TestWithParam Objdetect_QRCode; TEST_P(Objdetect_QRCode, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["test_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Close; TEST_P(Objdetect_QRCode_Close, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/close/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["close_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'close_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Monitor; TEST_P(Objdetect_QRCode_Monitor, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/monitor/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["monitor_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'monitor_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Curved; TEST_P(Objdetect_QRCode_Curved, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/curved/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["test_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Multi; TEST_P(Objdetect_QRCode_Multi, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/multiple/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); vector decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["multiple_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { size_t count_eq_info = 0; for (int i = 0; i < int(decoded_info.size()); i++) { for (int j = 0; j < int(config["info"].size()); j++) { std::string original_info = config["info"][j]; if (original_info == decoded_info[i]) { count_eq_info++; break; } } } EXPECT_EQ(config["info"].size(), count_eq_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode, testing::ValuesIn(qrcode_images_name)); INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Close, testing::ValuesIn(qrcode_images_close)); INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Monitor, testing::ValuesIn(qrcode_images_monitor)); INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Curved, testing::ValuesIn(qrcode_images_curved)); // INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Multi, testing::ValuesIn(qrcode_images_multiple)); } // namespace } // namespace opencv_test