/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { class CV_BlockMatchingTest : public cvtest::BaseTest { public: CV_BlockMatchingTest(); ~CV_BlockMatchingTest(); protected: void run(int /* idx */); }; CV_BlockMatchingTest::CV_BlockMatchingTest(){} CV_BlockMatchingTest::~CV_BlockMatchingTest(){} static double errorLevel(const Mat &ideal, Mat &actual) { uint8_t *date, *harta; harta = actual.data; date = ideal.data; int stride, h; stride = (int)ideal.step; h = ideal.rows; int error = 0; for (int i = 0; i < ideal.rows; i++) { for (int j = 0; j < ideal.cols; j++) { if (date[i * stride + j] != 0) if (abs(date[i * stride + j] - harta[i * stride + j]) > 2 * 16) { error += 1; } } } return ((double)((error * 100) * 1.0) / (stride * h)); } void CV_BlockMatchingTest::run(int ) { Mat image1, image2, gt; image1 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im2.png", IMREAD_GRAYSCALE); image2 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im6.png", IMREAD_GRAYSCALE); gt = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/disp2.png", IMREAD_GRAYSCALE); if(image1.empty() || image2.empty() || gt.empty()) { ts->printf(cvtest::TS::LOG, "Wrong input data \n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != image1.cols || gt.rows != image1.rows) { ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } RNG range; //set the parameters int binary_descriptor_type = range.uniform(0,8); int kernel_size, aggregation_window; if(binary_descriptor_type == 0) kernel_size = 5; else if(binary_descriptor_type == 2 || binary_descriptor_type == 3) kernel_size = 7; else if(binary_descriptor_type == 1) kernel_size = 11; else kernel_size = 9; if(binary_descriptor_type == 3) aggregation_window = 13; else aggregation_window = 11; Mat test = Mat(image1.rows, image1.cols, CV_8UC1); Ptr sbm = StereoBinaryBM::create(16, kernel_size); //we set the corresponding parameters sbm->setPreFilterCap(31); sbm->setMinDisparity(0); sbm->setTextureThreshold(10); sbm->setUniquenessRatio(0); sbm->setSpeckleWindowSize(400);//speckle size sbm->setSpeckleRange(200); sbm->setDisp12MaxDiff(0); sbm->setScalleFactor(16);//the scaling factor sbm->setBinaryKernelType(binary_descriptor_type);//binary descriptor kernel sbm->setAgregationWindowSize(aggregation_window); //speckle removal algorithm the user can choose between the average speckle removal algorithm //or the classical version that was implemented in open cv sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM); sbm->setUsePrefilter(false);//pre-filter or not the images prior to making the transformations //-- calculate the disparity image sbm->compute(image1, image2, test); if(test.empty()) { ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } if(errorLevel(gt,test) > 20) { ts->printf( cvtest::TS::LOG, "Too big error\n"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } class CV_SGBlockMatchingTest : public cvtest::BaseTest { public: CV_SGBlockMatchingTest(); ~CV_SGBlockMatchingTest(); protected: void run(int /* idx */); }; CV_SGBlockMatchingTest::CV_SGBlockMatchingTest(){} CV_SGBlockMatchingTest::~CV_SGBlockMatchingTest(){} void CV_SGBlockMatchingTest::run(int ) { Mat image1, image2, gt; image1 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im2.png", IMREAD_GRAYSCALE); image2 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im6.png", IMREAD_GRAYSCALE); gt = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/disp2.png", IMREAD_GRAYSCALE); ts->printf(cvtest::TS::LOG,(ts->get_data_path() + "stereomatching/datasets/tsukuba/im2.png").c_str()); if(image1.empty() || image2.empty() || gt.empty()) { ts->printf(cvtest::TS::LOG, "Wrong input data \n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != image1.cols || gt.rows != image1.rows) { ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } RNG range; //set the parameters int binary_descriptor_type = range.uniform(0,8); int kernel_size; if(binary_descriptor_type == 0) kernel_size = 5; else if(binary_descriptor_type == 2 || binary_descriptor_type == 3) kernel_size = 7; else if(binary_descriptor_type == 1) kernel_size = 11; else kernel_size = 9; Mat test = Mat(image1.rows, image1.cols, CV_8UC1); Mat imgDisparity16S2 = Mat(image1.rows, image1.cols, CV_16S); Ptr sgbm = StereoBinarySGBM::create(0, 16, kernel_size); //setting the penalties for sgbm sgbm->setP1(10); sgbm->setP2(100); sgbm->setMinDisparity(0); sgbm->setNumDisparities(16);//set disparity number sgbm->setUniquenessRatio(1); sgbm->setSpeckleWindowSize(400); sgbm->setSpeckleRange(200); sgbm->setDisp12MaxDiff(1); sgbm->setBinaryKernelType(binary_descriptor_type);//set the binary descriptor sgbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM); //the avg speckle removal algorithm sgbm->setSubPixelInterpolationMethod(CV_SIMETRICV_INTERPOLATION);// the SIMETRIC V interpolation method sgbm->compute(image1, image2, imgDisparity16S2); double minVal; double maxVal; minMaxLoc(imgDisparity16S2, &minVal, &maxVal); imgDisparity16S2.convertTo(test, CV_8UC1, 255 / (maxVal - minVal)); if(test.empty()) { ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } double error = errorLevel(gt,test); if(error > 10) { ts->printf( cvtest::TS::LOG, "Too big error\n"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } TEST(block_matching_simple_test, accuracy) { CV_BlockMatchingTest test; test.safe_run(); } TEST(SG_block_matching_simple_test, accuracy) { CV_SGBlockMatchingTest test; test.safe_run(); } }} // namespace