#include #include #include #include #include #include "opencv2/core.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/cudaoptflow.hpp" #include "opencv2/cudaarithm.hpp" #include "opencv2/video/tracking.hpp" using namespace cv; using namespace cv::cuda; //this function is taken from opencv/samples/gpu/optical_flow.cpp inline bool isFlowCorrect(Point2f u) { return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; } //this function is taken from opencv/samples/gpu/optical_flow.cpp static Vec3b computeColor(float fx, float fy) { static bool first = true; // relative lengths of color transitions: // these are chosen based on perceptual similarity // (e.g. one can distinguish more shades between red and yellow // than between yellow and green) const int RY = 15; const int YG = 6; const int GC = 4; const int CB = 11; const int BM = 13; const int MR = 6; const int NCOLS = RY + YG + GC + CB + BM + MR; static Vec3i colorWheel[NCOLS]; if (first) { int k = 0; for (int i = 0; i < RY; ++i, ++k) colorWheel[k] = Vec3i(255, 255 * i / RY, 0); for (int i = 0; i < YG; ++i, ++k) colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0); for (int i = 0; i < GC; ++i, ++k) colorWheel[k] = Vec3i(0, 255, 255 * i / GC); for (int i = 0; i < CB; ++i, ++k) colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255); for (int i = 0; i < BM; ++i, ++k) colorWheel[k] = Vec3i(255 * i / BM, 0, 255); for (int i = 0; i < MR; ++i, ++k) colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR); first = false; } const float rad = sqrt(fx * fx + fy * fy); const float a = atan2(-fy, -fx) / (float)CV_PI; const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1); const int k0 = static_cast(fk); const int k1 = (k0 + 1) % NCOLS; const float f = fk - k0; Vec3b pix; for (int b = 0; b < 3; b++) { const float col0 = colorWheel[k0][b] / 255.0f; const float col1 = colorWheel[k1][b] / 255.0f; float col = (1 - f) * col0 + f * col1; if (rad <= 1) col = 1 - rad * (1 - col); // increase saturation with radius else col *= .75; // out of range pix[2 - b] = static_cast(255.0 * col); } return pix; } //this function is taken from opencv/samples/gpu/optical_flow.cpp static void drawOpticalFlow(const Mat_& flowx, const Mat_& flowy , Mat& dst, float maxmotion = -1) { dst.create(flowx.size(), CV_8UC3); dst.setTo(Scalar::all(0)); // determine motion range: float maxrad = maxmotion; if (maxmotion <= 0) { maxrad = 1; for (int y = 0; y < flowx.rows; ++y) { for (int x = 0; x < flowx.cols; ++x) { Point2f u(flowx(y, x), flowy(y, x)); if (!isFlowCorrect(u)) continue; maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y)); } } } for (int y = 0; y < flowx.rows; ++y) { for (int x = 0; x < flowx.cols; ++x) { Point2f u(flowx(y, x), flowy(y, x)); if (isFlowCorrect(u)) dst.at(y, x) = computeColor(u.x / maxrad, u.y / maxrad); } } } /* ROI config file format. numrois 3 roi0 640 96 1152 192 roi1 640 64 896 864 roi2 640 960 256 32 */ bool parseROI(std::string ROIFileName, std::vector& roiData) { std::string str; uint32_t nRois = 0; std::ifstream hRoiFile; hRoiFile.open(ROIFileName, std::ios::in); if (hRoiFile.is_open()) { while (std::getline(hRoiFile, str)) { std::istringstream iss(str); std::vector tokens{ std::istream_iterator{iss}, std::istream_iterator{} }; if (tokens.size() == 0) continue; // if empty line, coninue transform(tokens[0].begin(), tokens[0].end(), tokens[0].begin(), ::tolower); if (tokens[0] == "numrois") { nRois = atoi(tokens[1].data()); } else if (tokens[0].rfind("roi", 0) == 0) { cv::Rect roi; roi.x = atoi(tokens[1].data()); roi.y = atoi(tokens[2].data()); roi.width = atoi(tokens[3].data()); roi.height = atoi(tokens[4].data()); roiData.push_back(roi); } else if (tokens[0].rfind("#", 0) == 0) { continue; } else { std::cout << "Unidentified keyword in roi config file " << tokens[0] << std::endl; hRoiFile.close(); return false; } } } else { std::cout << "Unable to open ROI file " << std::endl; return false; } if (nRois != roiData.size()) { std::cout << "NumRois(" << nRois << ")and specified roi rects (" << roiData.size() << ")are not matching " << std::endl; hRoiFile.close(); return false; } hRoiFile.close(); return true; } int main(int argc, char **argv) { std::unordered_map presetMap = { { "slow", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_SLOW }, { "medium", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_MEDIUM }, { "fast", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST } }; std::unordered_map outputGridSize = { { 1, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_1 }, { 2, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_2 }, { 4, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_4 } }; std::unordered_map hintGridSize = { { 1, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_1 }, { 2, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_2 }, { 4, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_4 }, { 8, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_8 } }; try { CommandLineParser cmd(argc, argv, "{ l left | ../data/basketball1.png | specify left image }" "{ r right | ../data/basketball2.png | specify right image }" "{ g gpuid | 0 | cuda device index}" "{ p preset | slow | perf preset for OF algo [ options : slow, medium, fast ]}" "{ og outputGridSize | 1 | Output grid size of OF vector [ options : 1, 2, 4 ]}" "{ hg hintGridSize | 1 | Hint grid size of OF vector [ options : 1, 2, 4, 8 ]}" "{ o output | OpenCVNvOF.flo | output flow vector file in middlebury format}" "{ rc roiConfigFile | | Region of Interest config file }" "{ th enableTemporalHints | false | Enable temporal hints}" "{ eh enableExternalHints | false | Enable external hints}" "{ cb enableCostBuffer | false | Enable output cost buffer}" "{ h help | | print help message }"); cmd.about("Nvidia's optical flow sample."); if (cmd.has("help") || !cmd.check()) { cmd.printMessage(); cmd.printErrors(); return 0; } std::string pathL = cmd.get("left"); std::string pathR = cmd.get("right"); std::string preset = cmd.get("preset"); std::string output = cmd.get("output"); std::string roiConfiFile = cmd.get("roiConfigFile"); bool enableExternalHints = cmd.get("enableExternalHints"); bool enableTemporalHints = cmd.get("enableTemporalHints"); bool enableCostBuffer = cmd.get("enableCostBuffer"); int gpuId = cmd.get("gpuid"); int outputBufferGridSize = cmd.get("outputGridSize"); int hintBufferGridSize = cmd.get("hintGridSize"); if (pathL.empty()) std::cout << "Specify left image path" << std::endl; if (pathR.empty()) std::cout << "Specify right image path" << std::endl; if (preset.empty()) std::cout << "Specify perf preset for OpticalFlow algo" << std::endl; if (pathL.empty() || pathR.empty()) return 0; auto p = presetMap.find(preset); if (p == presetMap.end()) { std::cout << "Invalid preset level : " << preset << std::endl; return 0; } NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL perfPreset = p->second; auto o = outputGridSize.find(outputBufferGridSize); if (o == outputGridSize.end()) { std::cout << "Invalid output grid size: " << outputBufferGridSize << std::endl; return 0; } NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE outBufGridSize = o->second; NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE hintBufGridSize = NvidiaOpticalFlow_2_0::NV_OF_HINT_VECTOR_GRID_SIZE_UNDEFINED; if (enableExternalHints) { auto h = hintGridSize.find(hintBufferGridSize); if (h == hintGridSize.end()) { std::cout << "Invalid hint grid size: " << hintBufferGridSize << std::endl; return 0; } hintBufGridSize = h->second; } std::vector roiData; if (!roiConfiFile.empty()) { if (!parseROI(roiConfiFile, roiData)) { std::cout << "Wrong Region of Interest config file, proceeding without ROI" << std::endl; } } Mat frameL = imread(pathL, IMREAD_GRAYSCALE); Mat frameR = imread(pathR, IMREAD_GRAYSCALE); if (frameL.empty()) std::cout << "Can't open '" << pathL << "'" << std::endl; if (frameR.empty()) std::cout << "Can't open '" << pathR << "'" << std::endl; if (frameL.empty() || frameR.empty()) return -1; Ptr nvof = NvidiaOpticalFlow_2_0::create( frameL.size(), roiData, perfPreset, outBufGridSize, hintBufGridSize, enableTemporalHints, enableExternalHints, enableCostBuffer, gpuId); Mat flowx, flowy, flowxy, floatFlow, image; nvof->calc(frameL, frameR, flowxy); nvof->convertToFloat(flowxy, floatFlow); if (!output.empty()) { if (!writeOpticalFlow(output, floatFlow)) std::cout << "Failed to save Flow Vector" << std::endl; else std::cout << "Flow vector saved as '" << output << "'" << std::endl; } Mat planes[] = { flowx, flowy }; split(floatFlow, planes); flowx = planes[0]; flowy = planes[1]; drawOpticalFlow(flowx, flowy, image, 10); imshow("Colorize image", image); waitKey(0); nvof->collectGarbage(); } catch (const std::exception &ex) { std::cout << ex.what() << std::endl; return 1; } return 0; }