// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" namespace opencv_test { namespace { CV_ENUM(MatchTemplType, CV_TM_CCORR, CV_TM_CCORR_NORMED, CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED) class Imgproc_MatchTemplateWithMask : public TestWithParam> { protected: // Member functions inherited from ::testing::Test void SetUp() override; // Matrices for test calculations (always CV_32) Mat img_; Mat templ_; Mat mask_; Mat templ_masked_; Mat img_roi_masked_; // Matrices for call to matchTemplate (have test type) Mat img_testtype_; Mat templ_testtype_; Mat mask_testtype_; Mat result_; // Constants static const Size IMG_SIZE; static const Size TEMPL_SIZE; static const Point TEST_POINT; }; // Arbitraryly chosen test constants const Size Imgproc_MatchTemplateWithMask::IMG_SIZE(160, 100); const Size Imgproc_MatchTemplateWithMask::TEMPL_SIZE(21, 13); const Point Imgproc_MatchTemplateWithMask::TEST_POINT(8, 9); void Imgproc_MatchTemplateWithMask::SetUp() { int type = std::get<0>(GetParam()); int type_mask = std::get<1>(GetParam()); // Matrices are created with the depth to test (for the call to matchTemplate()), but are also // converted to CV_32 for the test calculations, because matchTemplate() also only operates on // and returns CV_32. img_testtype_.create(IMG_SIZE, type); templ_testtype_.create(TEMPL_SIZE, type); mask_testtype_.create(TEMPL_SIZE, type_mask); randu(img_testtype_, 0, 10); randu(templ_testtype_, 0, 10); randu(mask_testtype_, 0, 5); img_testtype_.convertTo(img_, CV_32F); templ_testtype_.convertTo(templ_, CV_32F); mask_testtype_.convertTo(mask_, CV_32F); if (CV_MAT_DEPTH(type_mask) == CV_8U) { // CV_8U masks are interpreted as binary masks mask_.setTo(Scalar::all(1), mask_ != 0); } if (mask_.channels() != templ_.channels()) { std::vector mask_channels(templ_.channels(), mask_); merge(mask_channels.data(), templ_.channels(), mask_); } Rect roi(TEST_POINT, TEMPL_SIZE); img_roi_masked_ = img_(roi).mul(mask_); templ_masked_ = templ_.mul(mask_); } TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF) { matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF, mask_testtype_); // Naive implementation for one point Mat temp = img_roi_masked_ - templ_masked_; Scalar temp_s = sum(temp.mul(temp)); double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; EXPECT_NEAR(val, result_.at(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); } TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF_NORMED) { matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF_NORMED, mask_testtype_); // Naive implementation for one point Mat temp = img_roi_masked_ - templ_masked_; Scalar temp_s = sum(temp.mul(temp)); double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; // Normalization temp_s = sum(templ_masked_.mul(templ_masked_)); double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; temp_s = sum(img_roi_masked_.mul(img_roi_masked_)); norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; norm = sqrt(norm); val /= norm; EXPECT_NEAR(val, result_.at(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); } TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR) { matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR, mask_testtype_); // Naive implementation for one point Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_)); double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; EXPECT_NEAR(val, result_.at(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); } TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR_NORMED) { matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR_NORMED, mask_testtype_); // Naive implementation for one point Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_)); double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; // Normalization temp_s = sum(templ_masked_.mul(templ_masked_)); double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; temp_s = sum(img_roi_masked_.mul(img_roi_masked_)); norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; norm = sqrt(norm); val /= norm; EXPECT_NEAR(val, result_.at(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); } TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF) { matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF, mask_testtype_); // Naive implementation for one point Scalar temp_s = sum(mask_); for (int i = 0; i < 4; i++) { if (temp_s[i] != 0.0) temp_s[i] = 1.0 / temp_s[i]; else temp_s[i] = 1.0; } Mat temp = mask_.clone(); temp = temp_s; // Workaround to multiply Mat by Scalar Mat temp2 = mask_.clone(); temp2 = sum(templ_masked_); // Workaround to multiply Mat by Scalar Mat templx = templ_masked_ - mask_.mul(temp).mul(temp2); temp2 = sum(img_roi_masked_); // Workaround to multiply Mat by Scalar Mat imgx = img_roi_masked_ - mask_.mul(temp).mul(temp2); temp_s = sum(templx.mul(imgx)); double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; EXPECT_NEAR(val, result_.at(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); } TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF_NORMED) { matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF_NORMED, mask_testtype_); // Naive implementation for one point Scalar temp_s = sum(mask_); for (int i = 0; i < 4; i++) { if (temp_s[i] != 0.0) temp_s[i] = 1.0 / temp_s[i]; else temp_s[i] = 1.0; } Mat temp = mask_.clone(); temp = temp_s; // Workaround to multiply Mat by Scalar Mat temp2 = mask_.clone(); temp2 = sum(templ_masked_); // Workaround to multiply Mat by Scalar Mat templx = templ_masked_ - mask_.mul(temp).mul(temp2); temp2 = sum(img_roi_masked_); // Workaround to multiply Mat by Scalar Mat imgx = img_roi_masked_ - mask_.mul(temp).mul(temp2); temp_s = sum(templx.mul(imgx)); double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; // Normalization temp_s = sum(templx.mul(templx)); double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; temp_s = sum(imgx.mul(imgx)); norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; norm = sqrt(norm); val /= norm; EXPECT_NEAR(val, result_.at(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); } INSTANTIATE_TEST_CASE_P(SingleChannelMask, Imgproc_MatchTemplateWithMask, Combine( Values(CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3), Values(CV_32FC1, CV_8UC1))); INSTANTIATE_TEST_CASE_P(MultiChannelMask, Imgproc_MatchTemplateWithMask, Combine( Values(CV_32FC3, CV_8UC3), Values(CV_32FC3, CV_8UC3))); class Imgproc_MatchTemplateWithMask2 : public TestWithParam> { protected: // Member functions inherited from ::testing::Test void SetUp() override; // Data members Mat img_; Mat templ_; Mat mask_; Mat result_withoutmask_; Mat result_withmask_; // Constants static const Size IMG_SIZE; static const Size TEMPL_SIZE; }; // Arbitraryly chosen test constants const Size Imgproc_MatchTemplateWithMask2::IMG_SIZE(160, 100); const Size Imgproc_MatchTemplateWithMask2::TEMPL_SIZE(21, 13); void Imgproc_MatchTemplateWithMask2::SetUp() { int type = std::get<0>(GetParam()); int type_mask = std::get<1>(GetParam()); img_.create(IMG_SIZE, type); templ_.create(TEMPL_SIZE, type); mask_.create(TEMPL_SIZE, type_mask); randu(img_, 0, 100); randu(templ_, 0, 100); if (CV_MAT_DEPTH(type_mask) == CV_8U) { // CV_8U implies binary mask, so all nonzero values should work randu(mask_, 1, 255); } else { mask_ = Scalar(1, 1, 1, 1); } } TEST_P(Imgproc_MatchTemplateWithMask2, CompareWithAndWithoutMask) { int method = std::get<2>(GetParam()); matchTemplate(img_, templ_, result_withmask_, method, mask_); matchTemplate(img_, templ_, result_withoutmask_, method); // Get maximum result for relative error calculation double min_val, max_val; minMaxLoc(abs(result_withmask_), &min_val, &max_val); // Get maximum of absolute diff for comparison double mindiff, maxdiff; minMaxLoc(abs(result_withmask_ - result_withoutmask_), &mindiff, &maxdiff); EXPECT_LT(maxdiff, max_val*TEMPL_SIZE.area()*FLT_EPSILON); } INSTANTIATE_TEST_CASE_P(SingleChannelMask, Imgproc_MatchTemplateWithMask2, Combine( Values(CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3), Values(CV_32FC1, CV_8UC1), Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED, CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED))); INSTANTIATE_TEST_CASE_P(MultiChannelMask, Imgproc_MatchTemplateWithMask2, Combine( Values(CV_32FC3, CV_8UC3), Values(CV_32FC3, CV_8UC3), Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED, CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED))); }} // namespace