// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2020 Intel Corporation #ifndef OPENCV_GAPI_VIDEO_TESTS_INL_HPP #define OPENCV_GAPI_VIDEO_TESTS_INL_HPP #include "gapi_video_tests.hpp" #include namespace opencv_test { TEST_P(BuildOptFlowPyramidTest, AccuracyTest) { std::vector outPyrOCV, outPyrGAPI; int outMaxLevelOCV = 0, outMaxLevelGAPI = 0; BuildOpticalFlowPyramidTestParams params { fileName, winSize, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage, getCompileArgs() }; BuildOpticalFlowPyramidTestOutput outOCV { outPyrOCV, outMaxLevelOCV }; BuildOpticalFlowPyramidTestOutput outGAPI { outPyrGAPI, outMaxLevelGAPI }; runOCVnGAPIBuildOptFlowPyramid(*this, params, outOCV, outGAPI); compareOutputPyramids(outGAPI, outOCV); } TEST_P(OptFlowLKTest, AccuracyTest) { std::vector outPtsOCV, outPtsGAPI, inPts; std::vector outStatusOCV, outStatusGAPI; std::vector outErrOCV, outErrGAPI; OptFlowLKTestParams params { fileNamePattern, channels, pointsNum, winSize, criteria, getCompileArgs() }; OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV }; OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI }; runOCVnGAPIOptFlowLK(*this, inPts, params, outOCV, outGAPI); compareOutputsOptFlow(outGAPI, outOCV); } TEST_P(OptFlowLKTestForPyr, AccuracyTest) { std::vector inPyr1, inPyr2; std::vector outPtsOCV, outPtsGAPI, inPts; std::vector outStatusOCV, outStatusGAPI; std::vector outErrOCV, outErrGAPI; OptFlowLKTestParams params { fileNamePattern, channels, pointsNum, winSize, criteria, getCompileArgs() }; OptFlowLKTestInput> in { inPyr1, inPyr2, inPts }; OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV }; OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI }; runOCVnGAPIOptFlowLKForPyr(*this, in, params, withDeriv, outOCV, outGAPI); compareOutputsOptFlow(outGAPI, outOCV); } TEST_P(BuildPyr_CalcOptFlow_PipelineTest, AccuracyTest) { std::vector outPtsOCV, outPtsGAPI, inPts; std::vector outStatusOCV, outStatusGAPI; std::vector outErrOCV, outErrGAPI; BuildOpticalFlowPyramidTestParams params { fileNamePattern, winSize, maxLevel, withDerivatives, BORDER_DEFAULT, BORDER_DEFAULT, true, getCompileArgs() }; auto customKernel = gapi::kernels(); auto kernels = gapi::combine(customKernel, params.compileArgs[0].get()); params.compileArgs = compile_args(kernels); OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV }; OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI }; runOCVnGAPIOptFlowPipeline(*this, params, outOCV, outGAPI, inPts); compareOutputsOptFlow(outGAPI, outOCV); } #ifdef HAVE_OPENCV_VIDEO TEST_P(BackgroundSubtractorTest, AccuracyTest) { cv::gapi::video::BackgroundSubtractorType opType; double thr = -1; std::tie(opType, thr) = typeAndThreshold; cv::gapi::video::BackgroundSubtractorParams bsp(opType, histLength, thr, detectShadows, learningRate); // G-API graph declaration cv::GMat in; cv::GMat out = cv::gapi::BackgroundSubtractor(in, bsp); // Preserving 'in' in output to have possibility to compare with OpenCV reference cv::GComputation c(cv::GIn(in), cv::GOut(cv::gapi::copy(in), out)); // G-API compilation of graph for streaming mode auto gapiBackSub = c.compileStreaming(getCompileArgs()); // Testing G-API Background Substractor in streaming mode const auto path = findDataFile(filePath); try { gapiBackSub.setSource(gapi::wip::make_src(path)); } catch (...) { throw SkipTestException("Video file can't be opened."); } cv::Ptr pOCVBackSub; if (opType == cv::gapi::video::TYPE_BS_MOG2) pOCVBackSub = cv::createBackgroundSubtractorMOG2(histLength, thr, detectShadows); else if (opType == cv::gapi::video::TYPE_BS_KNN) pOCVBackSub = cv::createBackgroundSubtractorKNN(histLength, thr, detectShadows); // Allowing 1% difference of all pixels between G-API and reference OpenCV results testBackgroundSubtractorStreaming(gapiBackSub, pOCVBackSub, 1, 1, learningRate, testNumFrames); } TEST_P(KalmanFilterTest, AccuracyTest) { cv::gapi::KalmanParams kp; initKalmanParams(type, dDim, mDim, cDim, kp); // OpenCV reference KalmanFilter initialization cv::KalmanFilter ocvKalman(dDim, mDim, cDim, type); initKalmanFilter(kp, true, ocvKalman); // measurement vector cv::Mat measure_vec(mDim, 1, type); // control vector cv::Mat ctrl_vec = Mat::zeros(cDim > 0 ? cDim : 2, 1, type); // G-API Kalman's output state cv::Mat gapiKState(dDim, 1, type); // OCV Kalman's output state cv::Mat ocvKState(dDim, 1, type); // G-API graph initialization cv::GMat m, ctrl; cv::GOpaque have_m; cv::GMat out = cv::gapi::KalmanFilter(m, have_m, ctrl, kp); cv::GComputation comp(cv::GIn(m, have_m, ctrl), cv::GOut(out)); cv::RNG& rng = cv::theRNG(); bool haveMeasure; for (int i = 0; i < numIter; i++) { haveMeasure = (rng(2u) == 1); // returns 0 or 1 - whether we have measurement at this iteration or not if (haveMeasure) cv::randu(measure_vec, Scalar::all(-1), Scalar::all(1)); if (cDim > 0) cv::randu(ctrl_vec, Scalar::all(-1), Scalar::all(1)); // G-API KalmanFilter call comp.apply(cv::gin(measure_vec, haveMeasure, ctrl_vec), cv::gout(gapiKState)); // OpenCV KalmanFilter call ocvKState = cDim > 0 ? ocvKalman.predict(ctrl_vec) : ocvKalman.predict(); if (haveMeasure) ocvKState = ocvKalman.correct(measure_vec); } // Comparison ////////////////////////////////////////////////////////////// { EXPECT_TRUE(AbsExact().to_compare_f()(gapiKState, ocvKState)); } } TEST_P(KalmanFilterNoControlTest, AccuracyTest) { cv::gapi::KalmanParams kp; initKalmanParams(type, dDim, mDim, 0, kp); // OpenCV reference KalmanFilter initialization cv::KalmanFilter ocvKalman(dDim, mDim, 0, type); initKalmanFilter(kp, false, ocvKalman); // measurement vector cv::Mat measure_vec(mDim, 1, type); // G-API Kalman's output state cv::Mat gapiKState(dDim, 1, type); // OCV Kalman's output state cv::Mat ocvKState(dDim, 1, type); // G-API graph initialization cv::GMat m; cv::GOpaque have_m; cv::GMat out = cv::gapi::KalmanFilter(m, have_m, kp); cv::GComputation comp(cv::GIn(m, have_m), cv::GOut(out)); cv::RNG& rng = cv::theRNG(); bool haveMeasure; for (int i = 0; i < numIter; i++) { haveMeasure = (rng(2u) == 1); // returns 0 or 1 - whether we have measurement at this iteration or not if (haveMeasure) cv::randu(measure_vec, Scalar::all(-1), Scalar::all(1)); // G-API comp.apply(cv::gin(measure_vec, haveMeasure), cv::gout(gapiKState)); // OpenCV ocvKState = ocvKalman.predict(); if (haveMeasure) ocvKState = ocvKalman.correct(measure_vec); } // Comparison ////////////////////////////////////////////////////////////// { EXPECT_TRUE(AbsExact().to_compare_f()(gapiKState, ocvKState)); } } TEST_P(KalmanFilterCircleSampleTest, AccuracyTest) { // auxiliary variables cv::Mat processNoise(2, 1, type); // Input measurement cv::Mat measurement = Mat::zeros(1, 1, type); // Angle and it's delta(phi, delta_phi) cv::Mat state(2, 1, type); // G-API graph initialization cv::gapi::KalmanParams kp; kp.state = Mat::zeros(2, 1, type); cv::randn(kp.state, Scalar::all(0), Scalar::all(0.1)); kp.errorCov = Mat::eye(2, 2, type); if (type == CV_32F) kp.transitionMatrix = (Mat_(2, 2) << 1, 1, 0, 1); else kp.transitionMatrix = (Mat_(2, 2) << 1, 1, 0, 1); kp.processNoiseCov = Mat::eye(2, 2, type) * (1e-5); kp.measurementMatrix = Mat::eye(1, 2, type); kp.measurementNoiseCov = Mat::eye(1, 1, type) * (1e-1); cv::GMat m; cv::GOpaque have_measure; cv::GMat out = cv::gapi::KalmanFilter(m, have_measure, kp); cv::GComputation comp(cv::GIn(m, have_measure), cv::GOut(out)); // OCV Kalman initialization cv::KalmanFilter KF(2, 1, 0); initKalmanFilter(kp, false, KF); cv::randn(state, Scalar::all(0), Scalar::all(0.1)); // GAPI Corrected state cv::Mat gapiState(2, 1, type); // OCV Corrected state cv::Mat ocvCorrState(2, 1, type); // OCV Predicted state cv::Mat ocvPreState(2, 1, type); bool haveMeasure; for (int i = 0; i < numIter; ++i) { // Get OCV Prediction ocvPreState = KF.predict(); GAPI_DbgAssert(cv::norm(kp.measurementNoiseCov, KF.measurementNoiseCov, cv::NORM_INF) == 0); // generation measurement cv::randn(measurement, Scalar::all(0), Scalar::all((type == CV_32FC1) ? kp.measurementNoiseCov.at(0) : kp.measurementNoiseCov.at(0))); GAPI_DbgAssert(cv::norm(kp.measurementMatrix, KF.measurementMatrix, cv::NORM_INF) == 0); measurement += kp.measurementMatrix*state; if (cv::theRNG().uniform(0, 4) != 0) { haveMeasure = true; ocvCorrState = KF.correct(measurement); comp.apply(cv::gin(measurement, haveMeasure), cv::gout(gapiState)); EXPECT_TRUE(AbsExact().to_compare_f()(gapiState, ocvCorrState)); } else { // Get GAPI Prediction haveMeasure = false; comp.apply(cv::gin(measurement, haveMeasure), cv::gout(gapiState)); EXPECT_TRUE(AbsExact().to_compare_f()(gapiState, ocvPreState)); } GAPI_DbgAssert(cv::norm(kp.processNoiseCov, KF.processNoiseCov, cv::NORM_INF) == 0); cv::randn(processNoise, Scalar(0), Scalar::all(sqrt(type == CV_32FC1 ? kp.processNoiseCov.at(0, 0): kp.processNoiseCov.at(0, 0)))); GAPI_DbgAssert(cv::norm(kp.transitionMatrix, KF.transitionMatrix, cv::NORM_INF) == 0); state = kp.transitionMatrix*state + processNoise; } } #endif } // opencv_test #endif // OPENCV_GAPI_VIDEO_TESTS_INL_HPP