package org.opencv.test.dnn; import java.io.File; import java.io.FileInputStream; import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfFloat; import org.opencv.core.MatOfByte; import org.opencv.core.Scalar; import org.opencv.core.Size; import org.opencv.dnn.DictValue; import org.opencv.dnn.Dnn; import org.opencv.dnn.Layer; import org.opencv.dnn.Net; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import org.opencv.test.OpenCVTestCase; public class DnnTensorFlowTest extends OpenCVTestCase { private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH"; private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH"; String modelFileName = ""; String sourceImageFile = ""; Net net; private static void normAssert(Mat ref, Mat test) { final double l1 = 1e-5; final double lInf = 1e-4; double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total(); double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total(); assertTrue(normL1 < l1); assertTrue(normLInf < lInf); } @Override protected void setUp() throws Exception { super.setUp(); String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH); if(envDnnTestDataPath == null){ isTestCaseEnabled = false; return; } File dnnTestDataPath = new File(envDnnTestDataPath); modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString(); String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH); if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!"); File testDataPath = new File(envTestDataPath); File f = new File(testDataPath, "dnn/grace_hopper_227.png"); sourceImageFile = f.toString(); if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile); net = Dnn.readNetFromTensorflow(modelFileName); } public void testGetLayerTypes() { List layertypes = new ArrayList(); net.getLayerTypes(layertypes); assertFalse("No layer types returned!", layertypes.isEmpty()); } public void testGetLayer() { List layernames = net.getLayerNames(); assertFalse("Test net returned no layers!", layernames.isEmpty()); String testLayerName = layernames.get(0); DictValue layerId = new DictValue(testLayerName); assertEquals("DictValue did not return the string, which was used in constructor!", testLayerName, layerId.getStringValue()); Layer layer = net.getLayer(layerId); assertEquals("Layer name does not match the expected value!", testLayerName, layer.get_name()); } public void checkInceptionNet(Net net) { Mat image = Imgcodecs.imread(sourceImageFile); assertNotNull("Loading image from file failed!", image); Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true); assertNotNull("Converting image to blob failed!", inputBlob); net.setInput(inputBlob, "input"); Mat result = new Mat(); try { net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV); result = net.forward("softmax2"); } catch (Exception e) { fail("DNN forward failed: " + e.getMessage()); } assertNotNull("Net returned no result!", result); result = result.reshape(1, 1); Core.MinMaxLocResult minmax = Core.minMaxLoc(result); assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866); Mat top5RefScores = new MatOfFloat(new float[] { 0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f }).reshape(1, 1); Core.sort(result, result, Core.SORT_DESCENDING); normAssert(result.colRange(0, 5), top5RefScores); } public void testTestNetForward() { checkInceptionNet(net); } public void testReadFromBuffer() { File modelFile = new File(modelFileName); byte[] modelBuffer = new byte[ (int)modelFile.length() ]; try { FileInputStream fis = new FileInputStream(modelFile); fis.read(modelBuffer); fis.close(); } catch (IOException e) { fail("Failed to read a model: " + e.getMessage()); } net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer)); checkInceptionNet(net); } public void testGetAvailableTargets() { List targets = Dnn.getAvailableTargets(Dnn.DNN_BACKEND_OPENCV); assertTrue(targets.contains(Dnn.DNN_TARGET_CPU)); } }