package org.opencv.test.dnn; import java.io.File; import java.io.FileInputStream; import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfInt; import org.opencv.core.MatOfFloat; import org.opencv.core.MatOfByte; import org.opencv.core.Scalar; import org.opencv.core.Size; import org.opencv.dnn.DictValue; import org.opencv.dnn.Dnn; import org.opencv.dnn.Layer; import org.opencv.dnn.Net; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import org.opencv.test.OpenCVTestCase; /* * regression test for #12324, * testing various java.util.List invocations, * which use the LIST_GET macro */ public class DnnListRegressionTest extends OpenCVTestCase { private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH"; private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH"; String modelFileName = ""; String sourceImageFile = ""; Net net; @Override protected void setUp() throws Exception { super.setUp(); String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH); if(envDnnTestDataPath == null){ isTestCaseEnabled = false; return; } File dnnTestDataPath = new File(envDnnTestDataPath); modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString(); String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH); if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!"); File testDataPath = new File(envTestDataPath); File f = new File(testDataPath, "dnn/grace_hopper_227.png"); sourceImageFile = f.toString(); if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile); net = Dnn.readNetFromTensorflow(modelFileName); Mat image = Imgcodecs.imread(sourceImageFile); assertNotNull("Loading image from file failed!", image); Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true); assertNotNull("Converting image to blob failed!", inputBlob); net.setInput(inputBlob, "input"); } public void testSetInputsNames() { List inputs = new ArrayList(); inputs.add("input"); try { net.setInputsNames(inputs); } catch(Exception e) { fail("Net setInputsNames failed: " + e.getMessage()); } } public void testForward() { List outs = new ArrayList(); List outNames = new ArrayList(); outNames.add("softmax2"); try { net.forward(outs,outNames); } catch(Exception e) { fail("Net forward failed: " + e.getMessage()); } } public void testGetMemoryConsumption() { int layerId = 1; List netInputShapes = new ArrayList(); netInputShapes.add(new MatOfInt(1, 3, 224, 224)); long[] weights=null; long[] blobs=null; try { net.getMemoryConsumption(layerId, netInputShapes, weights, blobs); } catch(Exception e) { fail("Net getMemoryConsumption failed: " + e.getMessage()); } } public void testGetFLOPS() { int layerId = 1; List netInputShapes = new ArrayList(); netInputShapes.add(new MatOfInt(1, 3, 224, 224)); try { net.getFLOPS(layerId, netInputShapes); } catch(Exception e) { fail("Net getFLOPS failed: " + e.getMessage()); } } }