/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { //Statistics Helpers struct ErrorInfo { ErrorInfo(double errT, double errR) : errorTrans(errT), errorRot(errR) { } bool operator<(const ErrorInfo& e) const { return sqrt(errorTrans*errorTrans + errorRot*errorRot) < sqrt(e.errorTrans*e.errorTrans + e.errorRot*e.errorRot); } double errorTrans; double errorRot; }; //Try to find the translation and rotation thresholds to achieve a predefined percentage of success. //Since a success is defined by error_trans < trans_thresh && error_rot < rot_thresh //this just gives an idea of the values to use static void findThreshold(const std::vector& v_trans, const std::vector& v_rot, double percentage, double& transThresh, double& rotThresh) { if (v_trans.empty() || v_rot.empty() || v_trans.size() != v_rot.size()) { transThresh = -1; rotThresh = -1; return; } std::vector error_info; error_info.reserve(v_trans.size()); for (size_t i = 0; i < v_trans.size(); i++) { error_info.push_back(ErrorInfo(v_trans[i], v_rot[i])); } std::sort(error_info.begin(), error_info.end()); size_t idx = static_cast(error_info.size() * percentage); transThresh = error_info[idx].errorTrans; rotThresh = error_info[idx].errorRot; } static double getMax(const std::vector& v) { return *std::max_element(v.begin(), v.end()); } static double getMean(const std::vector& v) { if (v.empty()) { return 0.0; } double sum = std::accumulate(v.begin(), v.end(), 0.0); return sum / v.size(); } static double getMedian(const std::vector& v) { if (v.empty()) { return 0.0; } std::vector v_copy = v; size_t size = v_copy.size(); size_t n = size / 2; std::nth_element(v_copy.begin(), v_copy.begin() + n, v_copy.end()); double val_n = v_copy[n]; if (size % 2 == 1) { return val_n; } else { std::nth_element(v_copy.begin(), v_copy.begin() + n - 1, v_copy.end()); return 0.5 * (val_n + v_copy[n - 1]); } } static void generatePose(const vector& points, Mat& rvec, Mat& tvec, RNG& rng, int nbTrials=10) { const double minVal = 1.0e-3; const double maxVal = 1.0; rvec.create(3, 1, CV_64FC1); tvec.create(3, 1, CV_64FC1); bool validPose = false; for (int trial = 0; trial < nbTrials && !validPose; trial++) { for (int i = 0; i < 3; i++) { rvec.at(i,0) = rng.uniform(minVal, maxVal); tvec.at(i,0) = (i == 2) ? rng.uniform(minVal*10, maxVal) : rng.uniform(-maxVal, maxVal); } Mat R; cv::Rodrigues(rvec, R); bool positiveDepth = true; for (size_t i = 0; i < points.size() && positiveDepth; i++) { Matx31d objPts(points[i].x, points[i].y, points[i].z); Mat camPts = R*objPts + tvec; if (camPts.at(2,0) <= 0) { positiveDepth = false; } } validPose = positiveDepth; } } static void generatePose(const vector& points, Mat& rvec, Mat& tvec, RNG& rng, int nbTrials=10) { vector points_double(points.size()); for (size_t i = 0; i < points.size(); i++) { points_double[i] = Point3d(points[i].x, points[i].y, points[i].z); } generatePose(points_double, rvec, tvec, rng, nbTrials); } static std::string printMethod(int method) { switch (method) { case 0: return "SOLVEPNP_ITERATIVE"; case 1: return "SOLVEPNP_EPNP"; case 2: return "SOLVEPNP_P3P"; case 3: return "SOLVEPNP_DLS (remaped to SOLVEPNP_EPNP)"; case 4: return "SOLVEPNP_UPNP (remaped to SOLVEPNP_EPNP)"; case 5: return "SOLVEPNP_AP3P"; case 6: return "SOLVEPNP_IPPE"; case 7: return "SOLVEPNP_IPPE_SQUARE"; case 8: return "SOLVEPNP_SQPNP"; default: return "Unknown value"; } } class CV_solvePnPRansac_Test : public cvtest::BaseTest { public: CV_solvePnPRansac_Test(bool planar_=false, bool planarTag_=false) : planar(planar_), planarTag(planarTag_) { eps[SOLVEPNP_ITERATIVE] = 1.0e-2; eps[SOLVEPNP_EPNP] = 1.0e-2; eps[SOLVEPNP_P3P] = 1.0e-2; eps[SOLVEPNP_AP3P] = 1.0e-2; eps[SOLVEPNP_DLS] = 1.0e-2; eps[SOLVEPNP_UPNP] = 1.0e-2; eps[SOLVEPNP_SQPNP] = 1.0e-2; totalTestsCount = 10; pointsCount = 500; } ~CV_solvePnPRansac_Test() {} protected: void generate3DPointCloud(vector& points, Point3f pmin = Point3f(-1, -1, 5), Point3f pmax = Point3f(1, 1, 10)) { RNG& rng = theRNG(); // fix the seed to use "fixed" input 3D points for (size_t i = 0; i < points.size(); i++) { float _x = rng.uniform(pmin.x, pmax.x); float _y = rng.uniform(pmin.y, pmax.y); float _z = rng.uniform(pmin.z, pmax.z); points[i] = Point3f(_x, _y, _z); } } void generatePlanarPointCloud(vector& points, Point2f pmin = Point2f(-1, -1), Point2f pmax = Point2f(1, 1)) { RNG& rng = theRNG(); // fix the seed to use "fixed" input 3D points if (planarTag) { const float squareLength_2 = rng.uniform(0.01f, pmax.x) / 2; points.clear(); points.push_back(Point3f(-squareLength_2, squareLength_2, 0)); points.push_back(Point3f(squareLength_2, squareLength_2, 0)); points.push_back(Point3f(squareLength_2, -squareLength_2, 0)); points.push_back(Point3f(-squareLength_2, -squareLength_2, 0)); } else { Mat rvec_double, tvec_double; generatePose(points, rvec_double, tvec_double, rng); Mat rvec, tvec, R; rvec_double.convertTo(rvec, CV_32F); tvec_double.convertTo(tvec, CV_32F); cv::Rodrigues(rvec, R); for (size_t i = 0; i < points.size(); i++) { float x = rng.uniform(pmin.x, pmax.x); float y = rng.uniform(pmin.y, pmax.y); float z = 0; Matx31f pt(x, y, z); Mat pt_trans = R * pt + tvec; points[i] = Point3f(pt_trans.at(0,0), pt_trans.at(1,0), pt_trans.at(2,0)); } } } void generateCameraMatrix(Mat& cameraMatrix, RNG& rng) { const double fcMinVal = 1e-3; const double fcMaxVal = 100; cameraMatrix.create(3, 3, CV_64FC1); cameraMatrix.setTo(Scalar(0)); cameraMatrix.at(0,0) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(1,1) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(0,2) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(1,2) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(2,2) = 1; } void generateDistCoeffs(Mat& distCoeffs, RNG& rng) { distCoeffs = Mat::zeros(4, 1, CV_64FC1); for (int i = 0; i < 3; i++) distCoeffs.at(i,0) = rng.uniform(0.0, 1.0e-6); } virtual bool runTest(RNG& rng, int mode, int method, const vector& points, double& errorTrans, double& errorRot) { if ((!planar && method == SOLVEPNP_IPPE) || method == SOLVEPNP_IPPE_SQUARE) { return true; } Mat rvec, tvec; vector inliers; Mat trueRvec, trueTvec; Mat intrinsics, distCoeffs; generateCameraMatrix(intrinsics, rng); //UPnP is mapped to EPnP //Uncomment this when UPnP is fixed // if (method == SOLVEPNP_UPNP) // { // intrinsics.at(1,1) = intrinsics.at(0,0); // } if (mode == 0) { distCoeffs = Mat::zeros(4, 1, CV_64FC1); } else { generateDistCoeffs(distCoeffs, rng); } generatePose(points, trueRvec, trueTvec, rng); vector projectedPoints; projectedPoints.resize(points.size()); projectPoints(points, trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints); for (size_t i = 0; i < projectedPoints.size(); i++) { if (i % 20 == 0) { projectedPoints[i] = projectedPoints[rng.uniform(0,(int)points.size()-1)]; } } solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, pointsCount, 0.5f, 0.99, inliers, method); bool isTestSuccess = inliers.size() >= points.size()*0.95; double rvecDiff = cvtest::norm(rvec, trueRvec, NORM_L2), tvecDiff = cvtest::norm(tvec, trueTvec, NORM_L2); isTestSuccess = isTestSuccess && rvecDiff < eps[method] && tvecDiff < eps[method]; errorTrans = tvecDiff; errorRot = rvecDiff; return isTestSuccess; } virtual void run(int) { ts->set_failed_test_info(cvtest::TS::OK); vector points, points_dls; points.resize(static_cast(pointsCount)); if (planar || planarTag) { generatePlanarPointCloud(points); } else { generate3DPointCloud(points); } RNG& rng = ts->get_rng(); for (int mode = 0; mode < 2; mode++) { for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++) { //To get the same input for each methods RNG rngCopy = rng; std::vector vec_errorTrans, vec_errorRot; vec_errorTrans.reserve(static_cast(totalTestsCount)); vec_errorRot.reserve(static_cast(totalTestsCount)); int successfulTestsCount = 0; for (int testIndex = 0; testIndex < totalTestsCount; testIndex++) { double errorTrans, errorRot; if (runTest(rngCopy, mode, method, points, errorTrans, errorRot)) { successfulTestsCount++; } vec_errorTrans.push_back(errorTrans); vec_errorRot.push_back(errorRot); } double maxErrorTrans = getMax(vec_errorTrans); double maxErrorRot = getMax(vec_errorRot); double meanErrorTrans = getMean(vec_errorTrans); double meanErrorRot = getMean(vec_errorRot); double medianErrorTrans = getMedian(vec_errorTrans); double medianErrorRot = getMedian(vec_errorRot); if (successfulTestsCount < 0.7*totalTestsCount) { ts->printf(cvtest::TS::LOG, "Invalid accuracy for %s, failed %d tests from %d, %s, " "maxErrT: %f, maxErrR: %f, " "meanErrT: %f, meanErrR: %f, " "medErrT: %f, medErrR: %f\n", printMethod(method).c_str(), totalTestsCount - successfulTestsCount, totalTestsCount, printMode(mode).c_str(), maxErrorTrans, maxErrorRot, meanErrorTrans, meanErrorRot, medianErrorTrans, medianErrorRot); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } cout << "mode: " << printMode(mode) << ", method: " << printMethod(method) << " -> " << ((double)successfulTestsCount / totalTestsCount) * 100 << "%" << " (maxErrT: " << maxErrorTrans << ", maxErrR: " << maxErrorRot << ", meanErrT: " << meanErrorTrans << ", meanErrR: " << meanErrorRot << ", medErrT: " << medianErrorTrans << ", medErrR: " << medianErrorRot << ")" << endl; double transThres, rotThresh; findThreshold(vec_errorTrans, vec_errorRot, 0.7, transThres, rotThresh); cout << "approximate translation threshold for 0.7: " << transThres << ", approximate rotation threshold for 0.7: " << rotThresh << endl; } cout << endl; } } std::string printMode(int mode) { switch (mode) { case 0: return "no distortion"; case 1: default: return "distorsion"; } } double eps[SOLVEPNP_MAX_COUNT]; int totalTestsCount; int pointsCount; bool planar; bool planarTag; }; class CV_solvePnP_Test : public CV_solvePnPRansac_Test { public: CV_solvePnP_Test(bool planar_=false, bool planarTag_=false) : CV_solvePnPRansac_Test(planar_, planarTag_) { eps[SOLVEPNP_ITERATIVE] = 1.0e-6; eps[SOLVEPNP_EPNP] = 1.0e-6; eps[SOLVEPNP_P3P] = 2.0e-4; eps[SOLVEPNP_AP3P] = 1.0e-4; eps[SOLVEPNP_DLS] = 1.0e-6; //DLS is remapped to EPnP, so we use the same threshold eps[SOLVEPNP_UPNP] = 1.0e-6; //UPnP is remapped to EPnP, so we use the same threshold eps[SOLVEPNP_IPPE] = 1.0e-6; eps[SOLVEPNP_IPPE_SQUARE] = 1.0e-6; eps[SOLVEPNP_SQPNP] = 1.0e-6; totalTestsCount = 1000; if (planar || planarTag) { if (planarTag) { pointsCount = 4; } else { pointsCount = 30; } } else { pointsCount = 500; } } ~CV_solvePnP_Test() {} protected: virtual bool runTest(RNG& rng, int mode, int method, const vector& points, double& errorTrans, double& errorRot) { if ((!planar && (method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE)) || (!planarTag && method == SOLVEPNP_IPPE_SQUARE)) { errorTrans = -1; errorRot = -1; //SOLVEPNP_IPPE and SOLVEPNP_IPPE_SQUARE need planar object return true; } //Tune thresholds... double epsilon_trans[SOLVEPNP_MAX_COUNT]; memcpy(epsilon_trans, eps, SOLVEPNP_MAX_COUNT * sizeof(*epsilon_trans)); double epsilon_rot[SOLVEPNP_MAX_COUNT]; memcpy(epsilon_rot, eps, SOLVEPNP_MAX_COUNT * sizeof(*epsilon_rot)); if (planar) { if (mode == 0) { epsilon_trans[SOLVEPNP_EPNP] = 5.0e-3; epsilon_trans[SOLVEPNP_DLS] = 5.0e-3; epsilon_trans[SOLVEPNP_UPNP] = 5.0e-3; epsilon_rot[SOLVEPNP_EPNP] = 5.0e-3; epsilon_rot[SOLVEPNP_DLS] = 5.0e-3; epsilon_rot[SOLVEPNP_UPNP] = 5.0e-3; } else { epsilon_trans[SOLVEPNP_ITERATIVE] = 1e-4; epsilon_trans[SOLVEPNP_EPNP] = 5e-3; epsilon_trans[SOLVEPNP_DLS] = 5e-3; epsilon_trans[SOLVEPNP_UPNP] = 5e-3; epsilon_trans[SOLVEPNP_P3P] = 1e-4; epsilon_trans[SOLVEPNP_AP3P] = 1e-4; epsilon_trans[SOLVEPNP_IPPE] = 1e-4; epsilon_trans[SOLVEPNP_IPPE_SQUARE] = 1e-4; epsilon_rot[SOLVEPNP_ITERATIVE] = 1e-4; epsilon_rot[SOLVEPNP_EPNP] = 5e-3; epsilon_rot[SOLVEPNP_DLS] = 5e-3; epsilon_rot[SOLVEPNP_UPNP] = 5e-3; epsilon_rot[SOLVEPNP_P3P] = 1e-4; epsilon_rot[SOLVEPNP_AP3P] = 1e-4; epsilon_rot[SOLVEPNP_IPPE] = 1e-4; epsilon_rot[SOLVEPNP_IPPE_SQUARE] = 1e-4; } } Mat trueRvec, trueTvec; Mat intrinsics, distCoeffs; generateCameraMatrix(intrinsics, rng); //UPnP is mapped to EPnP //Uncomment this when UPnP is fixed // if (method == SOLVEPNP_UPNP) // { // intrinsics.at(1,1) = intrinsics.at(0,0); // } if (mode == 0) { distCoeffs = Mat::zeros(4, 1, CV_64FC1); } else { generateDistCoeffs(distCoeffs, rng); } generatePose(points, trueRvec, trueTvec, rng); std::vector opoints; switch(method) { case SOLVEPNP_P3P: case SOLVEPNP_AP3P: opoints = std::vector(points.begin(), points.begin()+4); break; //UPnP is mapped to EPnP //Uncomment this when UPnP is fixed // case SOLVEPNP_UPNP: // if (points.size() > 50) // { // opoints = std::vector(points.begin(), points.begin()+50); // } // else // { // opoints = points; // } // break; default: opoints = points; break; } vector projectedPoints; projectedPoints.resize(opoints.size()); projectPoints(opoints, trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints); Mat rvec, tvec; bool isEstimateSuccess = solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, method); if (!isEstimateSuccess) { return false; } double rvecDiff = cvtest::norm(rvec, trueRvec, NORM_L2), tvecDiff = cvtest::norm(tvec, trueTvec, NORM_L2); bool isTestSuccess = rvecDiff < epsilon_rot[method] && tvecDiff < epsilon_trans[method]; errorTrans = tvecDiff; errorRot = rvecDiff; return isTestSuccess; } }; class CV_solveP3P_Test : public CV_solvePnPRansac_Test { public: CV_solveP3P_Test() { eps[SOLVEPNP_P3P] = 2.0e-4; eps[SOLVEPNP_AP3P] = 1.0e-4; totalTestsCount = 1000; } ~CV_solveP3P_Test() {} protected: virtual bool runTest(RNG& rng, int mode, int method, const vector& points, double& errorTrans, double& errorRot) { std::vector rvecs, tvecs; Mat trueRvec, trueTvec; Mat intrinsics, distCoeffs; generateCameraMatrix(intrinsics, rng); if (mode == 0) { distCoeffs = Mat::zeros(4, 1, CV_64FC1); } else { generateDistCoeffs(distCoeffs, rng); } generatePose(points, trueRvec, trueTvec, rng); std::vector opoints; opoints = std::vector(points.begin(), points.begin()+3); vector projectedPoints; projectedPoints.resize(opoints.size()); projectPoints(opoints, trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints); int num_of_solutions = solveP3P(opoints, projectedPoints, intrinsics, distCoeffs, rvecs, tvecs, method); if (num_of_solutions != (int) rvecs.size() || num_of_solutions != (int) tvecs.size() || num_of_solutions == 0) { return false; } bool isTestSuccess = false; for (size_t i = 0; i < rvecs.size() && !isTestSuccess; i++) { double rvecDiff = cvtest::norm(rvecs[i], trueRvec, NORM_L2); double tvecDiff = cvtest::norm(tvecs[i], trueTvec, NORM_L2); isTestSuccess = rvecDiff < eps[method] && tvecDiff < eps[method]; errorTrans = std::min(errorTrans, tvecDiff); errorRot = std::min(errorRot, rvecDiff); } return isTestSuccess; } virtual void run(int) { ts->set_failed_test_info(cvtest::TS::OK); vector points; points.resize(static_cast(pointsCount)); generate3DPointCloud(points); const int methodsCount = 2; int methods[] = {SOLVEPNP_P3P, SOLVEPNP_AP3P}; RNG rng = ts->get_rng(); for (int mode = 0; mode < 2; mode++) { //To get the same input for each methods RNG rngCopy = rng; for (int method = 0; method < methodsCount; method++) { std::vector vec_errorTrans, vec_errorRot; vec_errorTrans.reserve(static_cast(totalTestsCount)); vec_errorRot.reserve(static_cast(totalTestsCount)); int successfulTestsCount = 0; for (int testIndex = 0; testIndex < totalTestsCount; testIndex++) { double errorTrans = 0, errorRot = 0; if (runTest(rngCopy, mode, methods[method], points, errorTrans, errorRot)) { successfulTestsCount++; } vec_errorTrans.push_back(errorTrans); vec_errorRot.push_back(errorRot); } double maxErrorTrans = getMax(vec_errorTrans); double maxErrorRot = getMax(vec_errorRot); double meanErrorTrans = getMean(vec_errorTrans); double meanErrorRot = getMean(vec_errorRot); double medianErrorTrans = getMedian(vec_errorTrans); double medianErrorRot = getMedian(vec_errorRot); if (successfulTestsCount < 0.7*totalTestsCount) { ts->printf(cvtest::TS::LOG, "Invalid accuracy for %s, failed %d tests from %d, %s, " "maxErrT: %f, maxErrR: %f, " "meanErrT: %f, meanErrR: %f, " "medErrT: %f, medErrR: %f\n", printMethod(methods[method]).c_str(), totalTestsCount - successfulTestsCount, totalTestsCount, printMode(mode).c_str(), maxErrorTrans, maxErrorRot, meanErrorTrans, meanErrorRot, medianErrorTrans, medianErrorRot); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } cout << "mode: " << printMode(mode) << ", method: " << printMethod(methods[method]) << " -> " << ((double)successfulTestsCount / totalTestsCount) * 100 << "%" << " (maxErrT: " << maxErrorTrans << ", maxErrR: " << maxErrorRot << ", meanErrT: " << meanErrorTrans << ", meanErrR: " << meanErrorRot << ", medErrT: " << medianErrorTrans << ", medErrR: " << medianErrorRot << ")" << endl; double transThres, rotThresh; findThreshold(vec_errorTrans, vec_errorRot, 0.7, transThres, rotThresh); cout << "approximate translation threshold for 0.7: " << transThres << ", approximate rotation threshold for 0.7: " << rotThresh << endl; } } } }; TEST(Calib3d_SolveP3P, accuracy) { CV_solveP3P_Test test; test.safe_run();} TEST(Calib3d_SolvePnPRansac, accuracy) { CV_solvePnPRansac_Test test; test.safe_run(); } TEST(Calib3d_SolvePnP, accuracy) { CV_solvePnP_Test test; test.safe_run(); } TEST(Calib3d_SolvePnP, accuracy_planar) { CV_solvePnP_Test test(true); test.safe_run(); } TEST(Calib3d_SolvePnP, accuracy_planar_tag) { CV_solvePnP_Test test(true, true); test.safe_run(); } TEST(Calib3d_SolvePnPRansac, concurrency) { int count = 7*13; Mat object(1, count, CV_32FC3); randu(object, -100, 100); Mat camera_mat(3, 3, CV_32FC1); randu(camera_mat, 0.5, 1); camera_mat.at(0, 1) = 0.f; camera_mat.at(1, 0) = 0.f; camera_mat.at(2, 0) = 0.f; camera_mat.at(2, 1) = 0.f; camera_mat.at(2, 2) = 1.f; Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0)); vector image_vec; Mat rvec_gold(1, 3, CV_32FC1); randu(rvec_gold, 0, 1); Mat tvec_gold(1, 3, CV_32FC1); randu(tvec_gold, 0, 1); projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec); Mat image(1, count, CV_32FC2, &image_vec[0]); Mat rvec1, rvec2; Mat tvec1, tvec2; int threads = getNumThreads(); { // limit concurrency to get deterministic result theRNG().state = 20121010; setNumThreads(1); solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1); } { setNumThreads(threads); Mat rvec; Mat tvec; // parallel executions for(int i = 0; i < 10; ++i) { cv::theRNG().state = 20121010; solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec); } } { // single thread again theRNG().state = 20121010; setNumThreads(1); solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2); } double rnorm = cvtest::norm(rvec1, rvec2, NORM_INF); double tnorm = cvtest::norm(tvec1, tvec2, NORM_INF); EXPECT_LT(rnorm, 1e-6); EXPECT_LT(tnorm, 1e-6); } TEST(Calib3d_SolvePnPRansac, input_type) { const int numPoints = 10; Matx33d intrinsics(5.4794130238156129e+002, 0., 2.9835545700043139e+002, 0., 5.4817724002728005e+002, 2.3062194051986233e+002, 0., 0., 1.); std::vector points3d; std::vector points2d; for (int i = 0; i < numPoints; i+=2) { points3d.push_back(cv::Point3i(5+i, 3, 2)); points3d.push_back(cv::Point3i(5+i, 3+i, 2+i)); points2d.push_back(cv::Point2i(0, i)); points2d.push_back(cv::Point2i(-i, i)); } Mat R1, t1, R2, t2, R3, t3, R4, t4; EXPECT_TRUE(solvePnPRansac(points3d, points2d, intrinsics, cv::Mat(), R1, t1)); Mat points3dMat(points3d); Mat points2dMat(points2d); EXPECT_TRUE(solvePnPRansac(points3dMat, points2dMat, intrinsics, cv::Mat(), R2, t2)); points3dMat = points3dMat.reshape(3, 1); points2dMat = points2dMat.reshape(2, 1); EXPECT_TRUE(solvePnPRansac(points3dMat, points2dMat, intrinsics, cv::Mat(), R3, t3)); points3dMat = points3dMat.reshape(1, numPoints); points2dMat = points2dMat.reshape(1, numPoints); EXPECT_TRUE(solvePnPRansac(points3dMat, points2dMat, intrinsics, cv::Mat(), R4, t4)); EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(R1, R3, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(t1, t3, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(R1, R4, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(t1, t4, NORM_INF), 1e-6); } TEST(Calib3d_SolvePnPRansac, double_support) { Matx33d intrinsics(5.4794130238156129e+002, 0., 2.9835545700043139e+002, 0., 5.4817724002728005e+002, 2.3062194051986233e+002, 0., 0., 1.); std::vector points3d; std::vector points2d; std::vector points3dF; std::vector points2dF; for (int i = 0; i < 10 ; i+=2) { points3d.push_back(cv::Point3d(5+i, 3, 2)); points3dF.push_back(cv::Point3f(static_cast(5+i), 3, 2)); points3d.push_back(cv::Point3d(5+i, 3+i, 2+i)); points3dF.push_back(cv::Point3f(static_cast(5+i), static_cast(3+i), static_cast(2+i))); points2d.push_back(cv::Point2d(0, i)); points2dF.push_back(cv::Point2f(0, static_cast(i))); points2d.push_back(cv::Point2d(-i, i)); points2dF.push_back(cv::Point2f(static_cast(-i), static_cast(i))); } Mat R, t, RF, tF; vector inliers; solvePnPRansac(points3dF, points2dF, intrinsics, cv::Mat(), RF, tF, true, 100, 8.f, 0.999, inliers, cv::SOLVEPNP_P3P); solvePnPRansac(points3d, points2d, intrinsics, cv::Mat(), R, t, true, 100, 8.f, 0.999, inliers, cv::SOLVEPNP_P3P); EXPECT_LE(cvtest::norm(R, Mat_(RF), NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t, Mat_(tF), NORM_INF), 1e-3); } TEST(Calib3d_SolvePnPRansac, bad_input_points_19253) { // with this specific data // when computing the final pose using points in the consensus set with SOLVEPNP_ITERATIVE and solvePnP() // an exception is thrown from solvePnP because there are 5 non-coplanar 3D points and the DLT algorithm needs at least 6 non-coplanar 3D points // with PR #19253 we choose to return true, with the pose estimated from the MSS stage instead of throwing the exception float pts2d_[] = { -5.38358629e-01f, -5.09638414e-02f, -5.07192254e-01f, -2.20743284e-01f, -5.43107152e-01f, -4.90474701e-02f, -5.54325163e-01f, -1.86715424e-01f, -5.59334219e-01f, -4.01909500e-02f, -5.43504596e-01f, -4.61776406e-02f }; Mat pts2d(6, 2, CV_32FC1, pts2d_); float pts3d_[] = { -3.01153604e-02f, -1.55665115e-01f, 4.50000018e-01f, 4.27827090e-01f, 4.28645730e-01f, 1.08600008e+00f, -3.14165242e-02f, -1.52656138e-01f, 4.50000018e-01f, -1.46217480e-01f, 5.57961613e-02f, 7.17000008e-01f, -4.89348806e-02f, -1.38795510e-01f, 4.47000027e-01f, -3.13065052e-02f, -1.52636901e-01f, 4.51000035e-01f }; Mat pts3d(6, 3, CV_32FC1, pts3d_); Mat camera_mat = Mat::eye(3, 3, CV_64FC1); Mat rvec, tvec; vector inliers; // solvePnPRansac will return true with 5 inliers, which means the result is from MSS stage. bool result = solvePnPRansac(pts3d, pts2d, camera_mat, noArray(), rvec, tvec, false, 100, 4.f / 460.f, 0.99, inliers); EXPECT_EQ(inliers.size(), size_t(5)); EXPECT_TRUE(result); } TEST(Calib3d_SolvePnP, input_type) { Matx33d intrinsics(5.4794130238156129e+002, 0., 2.9835545700043139e+002, 0., 5.4817724002728005e+002, 2.3062194051986233e+002, 0., 0., 1.); vector points3d_; vector points3dF_; //Cube const float l = -0.1f; //Front face points3d_.push_back(Point3d(-l, -l, -l)); points3dF_.push_back(Point3f(-l, -l, -l)); points3d_.push_back(Point3d(l, -l, -l)); points3dF_.push_back(Point3f(l, -l, -l)); points3d_.push_back(Point3d(l, l, -l)); points3dF_.push_back(Point3f(l, l, -l)); points3d_.push_back(Point3d(-l, l, -l)); points3dF_.push_back(Point3f(-l, l, -l)); //Back face points3d_.push_back(Point3d(-l, -l, l)); points3dF_.push_back(Point3f(-l, -l, l)); points3d_.push_back(Point3d(l, -l, l)); points3dF_.push_back(Point3f(l, -l, l)); points3d_.push_back(Point3d(l, l, l)); points3dF_.push_back(Point3f(l, l, l)); points3d_.push_back(Point3d(-l, l, l)); points3dF_.push_back(Point3f(-l, l, l)); Mat trueRvec = (Mat_(3,1) << 0.1, -0.25, 0.467); Mat trueTvec = (Mat_(3,1) << -0.21, 0.12, 0.746); for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++) { vector points3d; vector points2d; vector points3dF; vector points2dF; if (method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE) { const float tagSize_2 = 0.05f / 2; points3d.push_back(Point3d(-tagSize_2, tagSize_2, 0)); points3d.push_back(Point3d( tagSize_2, tagSize_2, 0)); points3d.push_back(Point3d( tagSize_2, -tagSize_2, 0)); points3d.push_back(Point3d(-tagSize_2, -tagSize_2, 0)); points3dF.push_back(Point3f(-tagSize_2, tagSize_2, 0)); points3dF.push_back(Point3f( tagSize_2, tagSize_2, 0)); points3dF.push_back(Point3f( tagSize_2, -tagSize_2, 0)); points3dF.push_back(Point3f(-tagSize_2, -tagSize_2, 0)); } else if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P) { points3d = vector(points3d_.begin(), points3d_.begin()+4); points3dF = vector(points3dF_.begin(), points3dF_.begin()+4); } else { points3d = points3d_; points3dF = points3dF_; } projectPoints(points3d, trueRvec, trueTvec, intrinsics, noArray(), points2d); projectPoints(points3dF, trueRvec, trueTvec, intrinsics, noArray(), points2dF); //solvePnP { Mat R, t, RF, tF; solvePnP(points3dF, points2dF, Matx33f(intrinsics), Mat(), RF, tF, false, method); solvePnP(points3d, points2d, intrinsics, Mat(), R, t, false, method); //By default rvec and tvec must be returned in double precision EXPECT_EQ(RF.type(), tF.type()); EXPECT_EQ(RF.type(), CV_64FC1); EXPECT_EQ(R.type(), t.type()); EXPECT_EQ(R.type(), CV_64FC1); EXPECT_LE(cvtest::norm(R, RF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t, tF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, RF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, tF, NORM_INF), 1e-3); } { Mat R1, t1, R2, t2; solvePnP(points3dF, points2d, intrinsics, Mat(), R1, t1, false, method); solvePnP(points3d, points2dF, intrinsics, Mat(), R2, t2, false, method); //By default rvec and tvec must be returned in double precision EXPECT_EQ(R1.type(), t1.type()); EXPECT_EQ(R1.type(), CV_64FC1); EXPECT_EQ(R2.type(), t2.type()); EXPECT_EQ(R2.type(), CV_64FC1); EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t2, NORM_INF), 1e-3); } { Mat R1(3,1,CV_32FC1), t1(3,1,CV_64FC1); Mat R2(3,1,CV_64FC1), t2(3,1,CV_32FC1); solvePnP(points3dF, points2d, intrinsics, Mat(), R1, t1, false, method); solvePnP(points3d, points2dF, intrinsics, Mat(), R2, t2, false, method); //If not null, rvec and tvec must be returned in the same precision EXPECT_EQ(R1.type(), CV_32FC1); EXPECT_EQ(t1.type(), CV_64FC1); EXPECT_EQ(R2.type(), CV_64FC1); EXPECT_EQ(t2.type(), CV_32FC1); EXPECT_LE(cvtest::norm(Mat_(R1), R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, Mat_(t2), NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, Mat_(R1), NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, Mat_(t2), NORM_INF), 1e-3); } { Matx31f R1, t2; Matx31d R2, t1; solvePnP(points3dF, points2d, intrinsics, Mat(), R1, t1, false, method); solvePnP(points3d, points2dF, intrinsics, Mat(), R2, t2, false, method); Matx31d R1d(R1(0), R1(1), R1(2)); Matx31d t2d(t2(0), t2(1), t2(2)); EXPECT_LE(cvtest::norm(R1d, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, t2d, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R1d, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t2d, NORM_INF), 1e-3); } //solvePnPGeneric { vector Rs, ts, RFs, tFs; int res1 = solvePnPGeneric(points3dF, points2dF, Matx33f(intrinsics), Mat(), RFs, tFs, false, (SolvePnPMethod)method); int res2 = solvePnPGeneric(points3d, points2d, intrinsics, Mat(), Rs, ts, false, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Mat R = Rs.front(), t = ts.front(), RF = RFs.front(), tF = tFs.front(); //By default rvecs and tvecs must be returned in double precision EXPECT_EQ(RF.type(), tF.type()); EXPECT_EQ(RF.type(), CV_64FC1); EXPECT_EQ(R.type(), t.type()); EXPECT_EQ(R.type(), CV_64FC1); EXPECT_LE(cvtest::norm(R, RF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t, tF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, RF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, tF, NORM_INF), 1e-3); } { vector R1s, t1s, R2s, t2s; int res1 = solvePnPGeneric(points3dF, points2d, intrinsics, Mat(), R1s, t1s, false, (SolvePnPMethod)method); int res2 = solvePnPGeneric(points3d, points2dF, intrinsics, Mat(), R2s, t2s, false, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Mat R1 = R1s.front(), t1 = t1s.front(), R2 = R2s.front(), t2 = t2s.front(); //By default rvecs and tvecs must be returned in double precision EXPECT_EQ(R1.type(), t1.type()); EXPECT_EQ(R1.type(), CV_64FC1); EXPECT_EQ(R2.type(), t2.type()); EXPECT_EQ(R2.type(), CV_64FC1); EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t2, NORM_INF), 1e-3); } { vector > R1s, t2s; vector > R2s, t1s; int res1 = solvePnPGeneric(points3dF, points2d, intrinsics, Mat(), R1s, t1s, false, (SolvePnPMethod)method); int res2 = solvePnPGeneric(points3d, points2dF, intrinsics, Mat(), R2s, t2s, false, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Mat R1 = R1s.front(), t1 = t1s.front(); Mat R2 = R2s.front(), t2 = t2s.front(); //If not null, rvecs and tvecs must be returned in the same precision EXPECT_EQ(R1.type(), CV_32FC1); EXPECT_EQ(t1.type(), CV_64FC1); EXPECT_EQ(R2.type(), CV_64FC1); EXPECT_EQ(t2.type(), CV_32FC1); EXPECT_LE(cvtest::norm(Mat_(R1), R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, Mat_(t2), NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, Mat_(R1), NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, Mat_(t2), NORM_INF), 1e-3); } { vector R1s, t2s; vector R2s, t1s; int res1 = solvePnPGeneric(points3dF, points2d, intrinsics, Mat(), R1s, t1s, false, (SolvePnPMethod)method); int res2 = solvePnPGeneric(points3d, points2dF, intrinsics, Mat(), R2s, t2s, false, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Matx31f R1 = R1s.front(), t2 = t2s.front(); Matx31d R2 = R2s.front(), t1 = t1s.front(); Matx31d R1d(R1(0), R1(1), R1(2)), t2d(t2(0), t2(1), t2(2)); EXPECT_LE(cvtest::norm(R1d, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, t2d, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R1d, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t2d, NORM_INF), 1e-3); } if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P) { //solveP3P { vector Rs, ts, RFs, tFs; int res1 = solveP3P(points3dF, points2dF, Matx33f(intrinsics), Mat(), RFs, tFs, (SolvePnPMethod)method); int res2 = solveP3P(points3d, points2d, intrinsics, Mat(), Rs, ts, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Mat R = Rs.front(), t = ts.front(), RF = RFs.front(), tF = tFs.front(); //By default rvecs and tvecs must be returned in double precision EXPECT_EQ(RF.type(), tF.type()); EXPECT_EQ(RF.type(), CV_64FC1); EXPECT_EQ(R.type(), t.type()); EXPECT_EQ(R.type(), CV_64FC1); EXPECT_LE(cvtest::norm(R, RF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t, tF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, RF, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, tF, NORM_INF), 1e-3); } { vector R1s, t1s, R2s, t2s; int res1 = solveP3P(points3dF, points2d, intrinsics, Mat(), R1s, t1s, (SolvePnPMethod)method); int res2 = solveP3P(points3d, points2dF, intrinsics, Mat(), R2s, t2s, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Mat R1 = R1s.front(), t1 = t1s.front(), R2 = R2s.front(), t2 = t2s.front(); //By default rvecs and tvecs must be returned in double precision EXPECT_EQ(R1.type(), t1.type()); EXPECT_EQ(R1.type(), CV_64FC1); EXPECT_EQ(R2.type(), t2.type()); EXPECT_EQ(R2.type(), CV_64FC1); EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t2, NORM_INF), 1e-3); } { vector > R1s, t2s; vector > R2s, t1s; int res1 = solveP3P(points3dF, points2d, intrinsics, Mat(), R1s, t1s, (SolvePnPMethod)method); int res2 = solveP3P(points3d, points2dF, intrinsics, Mat(), R2s, t2s, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Mat R1 = R1s.front(), t1 = t1s.front(); Mat R2 = R2s.front(), t2 = t2s.front(); //If not null, rvecs and tvecs must be returned in the same precision EXPECT_EQ(R1.type(), CV_32FC1); EXPECT_EQ(t1.type(), CV_64FC1); EXPECT_EQ(R2.type(), CV_64FC1); EXPECT_EQ(t2.type(), CV_32FC1); EXPECT_LE(cvtest::norm(Mat_(R1), R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, Mat_(t2), NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, Mat_(R1), NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, Mat_(t2), NORM_INF), 1e-3); } { vector R1s, t2s; vector R2s, t1s; int res1 = solveP3P(points3dF, points2d, intrinsics, Mat(), R1s, t1s, (SolvePnPMethod)method); int res2 = solveP3P(points3d, points2dF, intrinsics, Mat(), R2s, t2s, (SolvePnPMethod)method); EXPECT_GT(res1, 0); EXPECT_GT(res2, 0); Matx31f R1 = R1s.front(), t2 = t2s.front(); Matx31d R2 = R2s.front(), t1 = t1s.front(); Matx31d R1d(R1(0), R1(1), R1(2)), t2d(t2(0), t2(1), t2(2)); EXPECT_LE(cvtest::norm(R1d, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(t1, t2d, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R1d, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(trueTvec, t2d, NORM_INF), 1e-3); } } } } TEST(Calib3d_SolvePnP, translation) { Mat cameraIntrinsic = Mat::eye(3,3, CV_32FC1); vector crvec; crvec.push_back(0.f); crvec.push_back(0.f); crvec.push_back(0.f); vector ctvec; ctvec.push_back(100.f); ctvec.push_back(100.f); ctvec.push_back(0.f); vector p3d; p3d.push_back(Point3f(0,0,0)); p3d.push_back(Point3f(0,0,10)); p3d.push_back(Point3f(0,10,10)); p3d.push_back(Point3f(10,10,10)); p3d.push_back(Point3f(2,5,5)); p3d.push_back(Point3f(-4,8,6)); vector p2d; projectPoints(p3d, crvec, ctvec, cameraIntrinsic, noArray(), p2d); Mat rvec; Mat tvec; rvec =(Mat_(3,1) << 0, 0, 0); tvec = (Mat_(3,1) << 100, 100, 0); solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, true); EXPECT_TRUE(checkRange(rvec)); EXPECT_TRUE(checkRange(tvec)); rvec =(Mat_(3,1) << 0, 0, 0); tvec = (Mat_(3,1) << 100, 100, 0); solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, true); EXPECT_TRUE(checkRange(rvec)); EXPECT_TRUE(checkRange(tvec)); solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, false); EXPECT_TRUE(checkRange(rvec)); EXPECT_TRUE(checkRange(tvec)); } TEST(Calib3d_SolvePnP, iterativeInitialGuess3pts) { { Matx33d intrinsics(605.4, 0.0, 317.35, 0.0, 601.2, 242.63, 0.0, 0.0, 1.0); double L = 0.1; vector p3d; p3d.push_back(Point3d(-L, -L, 0.0)); p3d.push_back(Point3d(L, -L, 0.0)); p3d.push_back(Point3d(L, L, 0.0)); Mat rvec_ground_truth = (Mat_(3,1) << 0.3, -0.2, 0.75); Mat tvec_ground_truth = (Mat_(3,1) << 0.15, -0.2, 1.5); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); Mat rvec_est = (Mat_(3,1) << 0.2, -0.1, 0.6); Mat tvec_est = (Mat_(3,1) << 0.05, -0.05, 1.0); solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE); cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); EXPECT_EQ(rvec_est.type(), CV_64FC1); EXPECT_EQ(tvec_est.type(), CV_64FC1); } { Matx33f intrinsics(605.4f, 0.0f, 317.35f, 0.0f, 601.2f, 242.63f, 0.0f, 0.0f, 1.0f); float L = 0.1f; vector p3d; p3d.push_back(Point3f(-L, -L, 0.0f)); p3d.push_back(Point3f(L, -L, 0.0f)); p3d.push_back(Point3f(L, L, 0.0f)); Mat rvec_ground_truth = (Mat_(3,1) << -0.75f, 0.4f, 0.34f); Mat tvec_ground_truth = (Mat_(3,1) << -0.15f, 0.35f, 1.58f); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); Mat rvec_est = (Mat_(3,1) << -0.5f, 0.2f, 0.2f); Mat tvec_est = (Mat_(3,1) << 0.0f, 0.2f, 1.0f); solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE); cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); EXPECT_EQ(rvec_est.type(), CV_32FC1); EXPECT_EQ(tvec_est.type(), CV_32FC1); } } TEST(Calib3d_SolvePnP, iterativeInitialGuess) { { Matx33d intrinsics(605.4, 0.0, 317.35, 0.0, 601.2, 242.63, 0.0, 0.0, 1.0); double L = 0.1; vector p3d; p3d.push_back(Point3d(-L, -L, 0.0)); p3d.push_back(Point3d(L, -L, 0.0)); p3d.push_back(Point3d(L, L, 0.0)); p3d.push_back(Point3d(-L, L, L/2)); p3d.push_back(Point3d(0, 0, -L/2)); Mat rvec_ground_truth = (Mat_(3,1) << 0.3, -0.2, 0.75); Mat tvec_ground_truth = (Mat_(3,1) << 0.15, -0.2, 1.5); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); Mat rvec_est = (Mat_(3,1) << 0.1, -0.1, 0.1); Mat tvec_est = (Mat_(3,1) << 0.0, -0.5, 1.0); solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE); cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); EXPECT_EQ(rvec_est.type(), CV_64FC1); EXPECT_EQ(tvec_est.type(), CV_64FC1); } { Matx33f intrinsics(605.4f, 0.0f, 317.35f, 0.0f, 601.2f, 242.63f, 0.0f, 0.0f, 1.0f); float L = 0.1f; vector p3d; p3d.push_back(Point3f(-L, -L, 0.0f)); p3d.push_back(Point3f(L, -L, 0.0f)); p3d.push_back(Point3f(L, L, 0.0f)); p3d.push_back(Point3f(-L, L, L/2)); p3d.push_back(Point3f(0, 0, -L/2)); Mat rvec_ground_truth = (Mat_(3,1) << -0.75f, 0.4f, 0.34f); Mat tvec_ground_truth = (Mat_(3,1) << -0.15f, 0.35f, 1.58f); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); Mat rvec_est = (Mat_(3,1) << -0.1f, 0.1f, 0.1f); Mat tvec_est = (Mat_(3,1) << 0.0f, 0.0f, 1.0f); solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE); cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); EXPECT_EQ(rvec_est.type(), CV_32FC1); EXPECT_EQ(tvec_est.type(), CV_32FC1); } } TEST(Calib3d_SolvePnP, generic) { { Matx33d intrinsics(605.4, 0.0, 317.35, 0.0, 601.2, 242.63, 0.0, 0.0, 1.0); double L = 0.1; vector p3d_; p3d_.push_back(Point3d(-L, L, 0)); p3d_.push_back(Point3d(L, L, 0)); p3d_.push_back(Point3d(L, -L, 0)); p3d_.push_back(Point3d(-L, -L, 0)); p3d_.push_back(Point3d(-L, L, L/2)); p3d_.push_back(Point3d(0, 0, -L/2)); const int ntests = 10; for (int numTest = 0; numTest < ntests; numTest++) { Mat rvec_ground_truth; Mat tvec_ground_truth; generatePose(p3d_, rvec_ground_truth, tvec_ground_truth, theRNG()); vector p2d_; projectPoints(p3d_, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d_); for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++) { vector rvecs_est; vector tvecs_est; vector p3d; vector p2d; if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P || method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE) { p3d = vector(p3d_.begin(), p3d_.begin()+4); p2d = vector(p2d_.begin(), p2d_.begin()+4); } else { p3d = p3d_; p2d = p2d_; } vector reprojectionErrors; solvePnPGeneric(p3d, p2d, intrinsics, noArray(), rvecs_est, tvecs_est, false, (SolvePnPMethod)method, noArray(), noArray(), reprojectionErrors); EXPECT_TRUE(!rvecs_est.empty()); EXPECT_TRUE(rvecs_est.size() == tvecs_est.size() && tvecs_est.size() == reprojectionErrors.size()); for (size_t i = 0; i < reprojectionErrors.size()-1; i++) { EXPECT_GE(reprojectionErrors[i+1], reprojectionErrors[i]); } bool isTestSuccess = false; for (size_t i = 0; i < rvecs_est.size() && !isTestSuccess; i++) { double rvecDiff = cvtest::norm(rvecs_est[i], rvec_ground_truth, NORM_L2); double tvecDiff = cvtest::norm(tvecs_est[i], tvec_ground_truth, NORM_L2); const double threshold = method == SOLVEPNP_P3P ? 1e-2 : 1e-4; isTestSuccess = rvecDiff < threshold && tvecDiff < threshold; } EXPECT_TRUE(isTestSuccess); } } } { Matx33f intrinsics(605.4f, 0.0f, 317.35f, 0.0f, 601.2f, 242.63f, 0.0f, 0.0f, 1.0f); float L = 0.1f; vector p3f_; p3f_.push_back(Point3f(-L, L, 0)); p3f_.push_back(Point3f(L, L, 0)); p3f_.push_back(Point3f(L, -L, 0)); p3f_.push_back(Point3f(-L, -L, 0)); p3f_.push_back(Point3f(-L, L, L/2)); p3f_.push_back(Point3f(0, 0, -L/2)); const int ntests = 10; for (int numTest = 0; numTest < ntests; numTest++) { Mat rvec_ground_truth; Mat tvec_ground_truth; generatePose(p3f_, rvec_ground_truth, tvec_ground_truth, theRNG()); vector p2f_; projectPoints(p3f_, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2f_); for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++) { vector rvecs_est; vector tvecs_est; vector p3f; vector p2f; if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P || method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE) { p3f = vector(p3f_.begin(), p3f_.begin()+4); p2f = vector(p2f_.begin(), p2f_.begin()+4); } else { p3f = p3f_; p2f = p2f_; } vector reprojectionErrors; solvePnPGeneric(p3f, p2f, intrinsics, noArray(), rvecs_est, tvecs_est, false, (SolvePnPMethod)method, noArray(), noArray(), reprojectionErrors); EXPECT_TRUE(!rvecs_est.empty()); EXPECT_TRUE(rvecs_est.size() == tvecs_est.size() && tvecs_est.size() == reprojectionErrors.size()); for (size_t i = 0; i < reprojectionErrors.size()-1; i++) { EXPECT_GE(reprojectionErrors[i+1], reprojectionErrors[i]); } bool isTestSuccess = false; for (size_t i = 0; i < rvecs_est.size() && !isTestSuccess; i++) { double rvecDiff = cvtest::norm(rvecs_est[i], rvec_ground_truth, NORM_L2); double tvecDiff = cvtest::norm(tvecs_est[i], tvec_ground_truth, NORM_L2); const double threshold = method == SOLVEPNP_P3P ? 1e-2 : 1e-4; isTestSuccess = rvecDiff < threshold && tvecDiff < threshold; } EXPECT_TRUE(isTestSuccess); } } } } TEST(Calib3d_SolvePnP, refine3pts) { { Matx33d intrinsics(605.4, 0.0, 317.35, 0.0, 601.2, 242.63, 0.0, 0.0, 1.0); double L = 0.1; vector p3d; p3d.push_back(Point3d(-L, -L, 0.0)); p3d.push_back(Point3d(L, -L, 0.0)); p3d.push_back(Point3d(L, L, 0.0)); Mat rvec_ground_truth = (Mat_(3,1) << 0.3, -0.2, 0.75); Mat tvec_ground_truth = (Mat_(3,1) << 0.15, -0.2, 1.5); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); { Mat rvec_est = (Mat_(3,1) << 0.2, -0.1, 0.6); Mat tvec_est = (Mat_(3,1) << 0.05, -0.05, 1.0); solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Levenberg-Marquardt" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } { Mat rvec_est = (Mat_(3,1) << 0.2, -0.1, 0.6); Mat tvec_est = (Mat_(3,1) << 0.05, -0.05, 1.0); solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Virtual Visual Servoing" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } } { Matx33f intrinsics(605.4f, 0.0f, 317.35f, 0.0f, 601.2f, 242.63f, 0.0f, 0.0f, 1.0f); float L = 0.1f; vector p3d; p3d.push_back(Point3f(-L, -L, 0.0f)); p3d.push_back(Point3f(L, -L, 0.0f)); p3d.push_back(Point3f(L, L, 0.0f)); Mat rvec_ground_truth = (Mat_(3,1) << -0.75f, 0.4f, 0.34f); Mat tvec_ground_truth = (Mat_(3,1) << -0.15f, 0.35f, 1.58f); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); { Mat rvec_est = (Mat_(3,1) << -0.5f, 0.2f, 0.2f); Mat tvec_est = (Mat_(3,1) << 0.0f, 0.2f, 1.0f); solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Levenberg-Marquardt" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } { Mat rvec_est = (Mat_(3,1) << -0.5f, 0.2f, 0.2f); Mat tvec_est = (Mat_(3,1) << 0.0f, 0.2f, 1.0f); solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Virtual Visual Servoing" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } } } TEST(Calib3d_SolvePnP, refine) { //double { Matx33d intrinsics(605.4, 0.0, 317.35, 0.0, 601.2, 242.63, 0.0, 0.0, 1.0); double L = 0.1; vector p3d; p3d.push_back(Point3d(-L, -L, 0.0)); p3d.push_back(Point3d(L, -L, 0.0)); p3d.push_back(Point3d(L, L, 0.0)); p3d.push_back(Point3d(-L, L, L/2)); p3d.push_back(Point3d(0, 0, -L/2)); Mat rvec_ground_truth = (Mat_(3,1) << 0.3, -0.2, 0.75); Mat tvec_ground_truth = (Mat_(3,1) << 0.15, -0.2, 1.5); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); { Mat rvec_est = (Mat_(3,1) << 0.1, -0.1, 0.1); Mat tvec_est = (Mat_(3,1) << 0.0, -0.5, 1.0); solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE); cout << "\nmethod: Levenberg-Marquardt (C API)" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } { Mat rvec_est = (Mat_(3,1) << 0.1, -0.1, 0.1); Mat tvec_est = (Mat_(3,1) << 0.0, -0.5, 1.0); solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Levenberg-Marquardt (C++ API)" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } { Mat rvec_est = (Mat_(3,1) << 0.1, -0.1, 0.1); Mat tvec_est = (Mat_(3,1) << 0.0, -0.5, 1.0); solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Virtual Visual Servoing" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } } //float { Matx33f intrinsics(605.4f, 0.0f, 317.35f, 0.0f, 601.2f, 242.63f, 0.0f, 0.0f, 1.0f); float L = 0.1f; vector p3d; p3d.push_back(Point3f(-L, -L, 0.0f)); p3d.push_back(Point3f(L, -L, 0.0f)); p3d.push_back(Point3f(L, L, 0.0f)); p3d.push_back(Point3f(-L, L, L/2)); p3d.push_back(Point3f(0, 0, -L/2)); Mat rvec_ground_truth = (Mat_(3,1) << -0.75f, 0.4f, 0.34f); Mat tvec_ground_truth = (Mat_(3,1) << -0.15f, 0.35f, 1.58f); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); { Mat rvec_est = (Mat_(3,1) << -0.1f, 0.1f, 0.1f); Mat tvec_est = (Mat_(3,1) << 0.0f, 0.0f, 1.0f); solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE); cout << "\nmethod: Levenberg-Marquardt (C API)" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } { Mat rvec_est = (Mat_(3,1) << -0.1f, 0.1f, 0.1f); Mat tvec_est = (Mat_(3,1) << 0.0f, 0.0f, 1.0f); solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Levenberg-Marquardt (C++ API)" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } { Mat rvec_est = (Mat_(3,1) << -0.1f, 0.1f, 0.1f); Mat tvec_est = (Mat_(3,1) << 0.0f, 0.0f, 1.0f); solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est); cout << "\nmethod: Virtual Visual Servoing" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6); } } //refine after solvePnP { Matx33d intrinsics(605.4, 0.0, 317.35, 0.0, 601.2, 242.63, 0.0, 0.0, 1.0); double L = 0.1; vector p3d; p3d.push_back(Point3d(-L, -L, 0.0)); p3d.push_back(Point3d(L, -L, 0.0)); p3d.push_back(Point3d(L, L, 0.0)); p3d.push_back(Point3d(-L, L, L/2)); p3d.push_back(Point3d(0, 0, -L/2)); Mat rvec_ground_truth = (Mat_(3,1) << 0.3, -0.2, 0.75); Mat tvec_ground_truth = (Mat_(3,1) << 0.15, -0.2, 1.5); vector p2d; projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d); //add small Gaussian noise RNG& rng = theRNG(); for (size_t i = 0; i < p2d.size(); i++) { p2d[i].x += rng.gaussian(5e-2); p2d[i].y += rng.gaussian(5e-2); } Mat rvec_est, tvec_est; solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, false, SOLVEPNP_EPNP); { Mat rvec_est_refine = rvec_est.clone(), tvec_est_refine = tvec_est.clone(); solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est_refine, tvec_est_refine, true, SOLVEPNP_ITERATIVE); cout << "\nmethod: Levenberg-Marquardt (C API)" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est (EPnP): " << rvec_est.t() << std::endl; cout << "rvec_est_refine: " << rvec_est_refine.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est (EPnP): " << tvec_est.t() << std::endl; cout << "tvec_est_refine: " << tvec_est_refine.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-2); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-3); EXPECT_LT(cvtest::norm(rvec_ground_truth, rvec_est_refine, NORM_INF), cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF)); EXPECT_LT(cvtest::norm(tvec_ground_truth, tvec_est_refine, NORM_INF), cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF)); } { Mat rvec_est_refine = rvec_est.clone(), tvec_est_refine = tvec_est.clone(); solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est_refine, tvec_est_refine); cout << "\nmethod: Levenberg-Marquardt (C++ API)" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "rvec_est_refine: " << rvec_est_refine.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; cout << "tvec_est_refine: " << tvec_est_refine.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-2); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-3); EXPECT_LT(cvtest::norm(rvec_ground_truth, rvec_est_refine, NORM_INF), cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF)); EXPECT_LT(cvtest::norm(tvec_ground_truth, tvec_est_refine, NORM_INF), cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF)); } { Mat rvec_est_refine = rvec_est.clone(), tvec_est_refine = tvec_est.clone(); solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est_refine, tvec_est_refine); cout << "\nmethod: Virtual Visual Servoing" << endl; cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl; cout << "rvec_est: " << rvec_est.t() << std::endl; cout << "rvec_est_refine: " << rvec_est_refine.t() << std::endl; cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl; cout << "tvec_est: " << tvec_est.t() << std::endl; cout << "tvec_est_refine: " << tvec_est_refine.t() << std::endl; EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-2); EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-3); EXPECT_LT(cvtest::norm(rvec_ground_truth, rvec_est_refine, NORM_INF), cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF)); EXPECT_LT(cvtest::norm(tvec_ground_truth, tvec_est_refine, NORM_INF), cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF)); } } } TEST(Calib3d_SolvePnPRansac, minPoints) { //https://github.com/opencv/opencv/issues/14423 Mat matK = Mat::eye(3,3,CV_64FC1); Mat distCoeff = Mat::zeros(1,5,CV_64FC1); Matx31d true_rvec(0.9072420896651262, 0.09226497171882152, 0.8880772883671504); Matx31d true_tvec(7.376333362427632, 8.434449036856979, 13.79801619778456); { //nb points = 5 --> ransac_kernel_method = SOLVEPNP_EPNP Mat keypoints13D = (Mat_(5, 3) << 12.00604, -2.8654366, 18.472504, 7.6863389, 4.9355154, 11.146358, 14.260933, 2.8320458, 12.582781, 3.4562225, 8.2668982, 11.300434, 15.316854, 3.7486348, 12.491116); vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1); vector objectPoints; for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(i,0) = imagesPoints[i].x; keypoints22D.at(i,1) = imagesPoints[i].y; objectPoints.push_back(Point3f(keypoints13D.at(i,0), keypoints13D.at(i,1), keypoints13D.at(i,2))); } Mat rvec = Mat::zeros(1,3,CV_64FC1); Mat Tvec = Mat::zeros(1,3,CV_64FC1); solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec); Mat rvec2, Tvec2; solvePnP(objectPoints, imagesPoints, matK, distCoeff, rvec2, Tvec2, false, SOLVEPNP_EPNP); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-4); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-4); EXPECT_LE(cvtest::norm(rvec, rvec2, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(Tvec, Tvec2, NORM_INF), 1e-6); } { //nb points = 4 --> ransac_kernel_method = SOLVEPNP_P3P Mat keypoints13D = (Mat_(4, 3) << 12.00604, -2.8654366, 18.472504, 7.6863389, 4.9355154, 11.146358, 14.260933, 2.8320458, 12.582781, 3.4562225, 8.2668982, 11.300434); vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1); vector objectPoints; for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(i,0) = imagesPoints[i].x; keypoints22D.at(i,1) = imagesPoints[i].y; objectPoints.push_back(Point3f(keypoints13D.at(i,0), keypoints13D.at(i,1), keypoints13D.at(i,2))); } Mat rvec = Mat::zeros(1,3,CV_64FC1); Mat Tvec = Mat::zeros(1,3,CV_64FC1); solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec); Mat rvec2, Tvec2; solvePnP(objectPoints, imagesPoints, matK, distCoeff, rvec2, Tvec2, false, SOLVEPNP_P3P); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-4); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-4); EXPECT_LE(cvtest::norm(rvec, rvec2, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(Tvec, Tvec2, NORM_INF), 1e-6); } } TEST(Calib3d_SolvePnPRansac, inputShape) { //https://github.com/opencv/opencv/issues/14423 Mat matK = Mat::eye(3,3,CV_64FC1); Mat distCoeff = Mat::zeros(1,5,CV_64FC1); Matx31d true_rvec(0.9072420896651262, 0.09226497171882152, 0.8880772883671504); Matx31d true_tvec(7.376333362427632, 8.434449036856979, 13.79801619778456); { //Nx3 1-channel Mat keypoints13D = (Mat_(6, 3) << 12.00604, -2.8654366, 18.472504, 7.6863389, 4.9355154, 11.146358, 14.260933, 2.8320458, 12.582781, 3.4562225, 8.2668982, 11.300434, 10.00604, 2.8654366, 15.472504, -4.6863389, 5.9355154, 13.146358); vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1); for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(i,0) = imagesPoints[i].x; keypoints22D.at(i,1) = imagesPoints[i].y; } Mat rvec, Tvec; solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6); } { //1xN 3-channel Mat keypoints13D(1, 6, CV_32FC3); keypoints13D.at(0,0) = Vec3f(12.00604f, -2.8654366f, 18.472504f); keypoints13D.at(0,1) = Vec3f(7.6863389f, 4.9355154f, 11.146358f); keypoints13D.at(0,2) = Vec3f(14.260933f, 2.8320458f, 12.582781f); keypoints13D.at(0,3) = Vec3f(3.4562225f, 8.2668982f, 11.300434f); keypoints13D.at(0,4) = Vec3f(10.00604f, 2.8654366f, 15.472504f); keypoints13D.at(0,5) = Vec3f(-4.6863389f, 5.9355154f, 13.146358f); vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2); for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(0,i) = Vec2f(imagesPoints[i].x, imagesPoints[i].y); } Mat rvec, Tvec; solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6); } { //Nx1 3-channel Mat keypoints13D(6, 1, CV_32FC3); keypoints13D.at(0,0) = Vec3f(12.00604f, -2.8654366f, 18.472504f); keypoints13D.at(1,0) = Vec3f(7.6863389f, 4.9355154f, 11.146358f); keypoints13D.at(2,0) = Vec3f(14.260933f, 2.8320458f, 12.582781f); keypoints13D.at(3,0) = Vec3f(3.4562225f, 8.2668982f, 11.300434f); keypoints13D.at(4,0) = Vec3f(10.00604f, 2.8654366f, 15.472504f); keypoints13D.at(5,0) = Vec3f(-4.6863389f, 5.9355154f, 13.146358f); vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2); for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(i,0) = Vec2f(imagesPoints[i].x, imagesPoints[i].y); } Mat rvec, Tvec; solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6); } { //vector vector keypoints13D; keypoints13D.push_back(Point3f(12.00604f, -2.8654366f, 18.472504f)); keypoints13D.push_back(Point3f(7.6863389f, 4.9355154f, 11.146358f)); keypoints13D.push_back(Point3f(14.260933f, 2.8320458f, 12.582781f)); keypoints13D.push_back(Point3f(3.4562225f, 8.2668982f, 11.300434f)); keypoints13D.push_back(Point3f(10.00604f, 2.8654366f, 15.472504f)); keypoints13D.push_back(Point3f(-4.6863389f, 5.9355154f, 13.146358f)); vector keypoints22D; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D); Mat rvec, Tvec; solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6); } { //vector vector keypoints13D; keypoints13D.push_back(Point3d(12.00604f, -2.8654366f, 18.472504f)); keypoints13D.push_back(Point3d(7.6863389f, 4.9355154f, 11.146358f)); keypoints13D.push_back(Point3d(14.260933f, 2.8320458f, 12.582781f)); keypoints13D.push_back(Point3d(3.4562225f, 8.2668982f, 11.300434f)); keypoints13D.push_back(Point3d(10.00604f, 2.8654366f, 15.472504f)); keypoints13D.push_back(Point3d(-4.6863389f, 5.9355154f, 13.146358f)); vector keypoints22D; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D); Mat rvec, Tvec; solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6); } } TEST(Calib3d_SolvePnP, inputShape) { //https://github.com/opencv/opencv/issues/14423 Mat matK = Mat::eye(3,3,CV_64FC1); Mat distCoeff = Mat::zeros(1,5,CV_64FC1); Matx31d true_rvec(0.407, 0.092, 0.88); Matx31d true_tvec(0.576, -0.43, 1.3798); vector objectPoints; const double L = 0.5; objectPoints.push_back(Point3d(-L, -L, L)); objectPoints.push_back(Point3d( L, -L, L)); objectPoints.push_back(Point3d( L, L, L)); objectPoints.push_back(Point3d(-L, L, L)); objectPoints.push_back(Point3d(-L, -L, -L)); objectPoints.push_back(Point3d( L, -L, -L)); const int methodsCount = 6; int methods[] = {SOLVEPNP_ITERATIVE, SOLVEPNP_EPNP, SOLVEPNP_P3P, SOLVEPNP_AP3P, SOLVEPNP_IPPE, SOLVEPNP_IPPE_SQUARE}; for (int method = 0; method < methodsCount; method++) { if (methods[method] == SOLVEPNP_IPPE_SQUARE) { objectPoints[0] = Point3d(-L, L, 0); objectPoints[1] = Point3d( L, L, 0); objectPoints[2] = Point3d( L, -L, 0); objectPoints[3] = Point3d(-L, -L, 0); } { //Nx3 1-channel Mat keypoints13D; if (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P || methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE) { keypoints13D = Mat(4, 3, CV_32FC1); } else { keypoints13D = Mat(6, 3, CV_32FC1); } for (int i = 0; i < keypoints13D.rows; i++) { keypoints13D.at(i,0) = static_cast(objectPoints[i].x); keypoints13D.at(i,1) = static_cast(objectPoints[i].y); keypoints13D.at(i,2) = static_cast(objectPoints[i].z); } vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1); for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(i,0) = imagesPoints[i].x; keypoints22D.at(i,1) = imagesPoints[i].y; } Mat rvec, Tvec; solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3); } { //1xN 3-channel Mat keypoints13D; if (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P || methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE) { keypoints13D = Mat(1, 4, CV_32FC3); } else { keypoints13D = Mat(1, 6, CV_32FC3); } for (int i = 0; i < keypoints13D.cols; i++) { keypoints13D.at(0,i) = Vec3f(static_cast(objectPoints[i].x), static_cast(objectPoints[i].y), static_cast(objectPoints[i].z)); } vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2); for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(0,i) = Vec2f(imagesPoints[i].x, imagesPoints[i].y); } Mat rvec, Tvec; solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3); } { //Nx1 3-channel Mat keypoints13D; if (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P || methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE) { keypoints13D = Mat(4, 1, CV_32FC3); } else { keypoints13D = Mat(6, 1, CV_32FC3); } for (int i = 0; i < keypoints13D.rows; i++) { keypoints13D.at(i,0) = Vec3f(static_cast(objectPoints[i].x), static_cast(objectPoints[i].y), static_cast(objectPoints[i].z)); } vector imagesPoints; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints); Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2); for (int i = 0; i < static_cast(imagesPoints.size()); i++) { keypoints22D.at(i,0) = Vec2f(imagesPoints[i].x, imagesPoints[i].y); } Mat rvec, Tvec; solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3); } { //vector vector keypoints13D; const int nbPts = (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P || methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE) ? 4 : 6; for (int i = 0; i < nbPts; i++) { keypoints13D.push_back(Point3f(static_cast(objectPoints[i].x), static_cast(objectPoints[i].y), static_cast(objectPoints[i].z))); } vector keypoints22D; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D); Mat rvec, Tvec; solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3); } { //vector vector keypoints13D; const int nbPts = (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P || methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE) ? 4 : 6; for (int i = 0; i < nbPts; i++) { keypoints13D.push_back(objectPoints[i]); } vector keypoints22D; projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D); Mat rvec, Tvec; solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]); EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3); EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3); } } } }} // namespace