/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "test_chessboardgenerator.hpp" #include namespace opencv_test { namespace { #define _L2_ERR //#define DEBUG_CHESSBOARD #ifdef DEBUG_CHESSBOARD void show_points( const Mat& gray, const Mat& expected, const vector& actual, bool was_found ) { Mat rgb( gray.size(), CV_8U); merge(vector(3, gray), rgb); for(size_t i = 0; i < actual.size(); i++ ) circle( rgb, actual[i], 5, Scalar(0, 0, 200), 1, LINE_AA); if( !expected.empty() ) { const Point2f* u_data = expected.ptr(); size_t count = expected.cols * expected.rows; for(size_t i = 0; i < count; i++ ) circle(rgb, u_data[i], 4, Scalar(0, 240, 0), 1, LINE_AA); } putText(rgb, was_found ? "FOUND !!!" : "NOT FOUND", Point(5, 20), FONT_HERSHEY_PLAIN, 1, Scalar(0, 240, 0)); imshow( "test", rgb ); while ((uchar)waitKey(0) != 'q') {}; } #else #define show_points(...) #endif enum Pattern { CHESSBOARD,CHESSBOARD_SB,CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID}; class CV_ChessboardDetectorTest : public cvtest::BaseTest { public: CV_ChessboardDetectorTest( Pattern pattern, int algorithmFlags = 0 ); protected: void run(int); void run_batch(const string& filename); bool checkByGenerator(); bool checkByGeneratorHighAccuracy(); // wraps calls based on the given pattern bool findChessboardCornersWrapper(InputArray image, Size patternSize, OutputArray corners,int flags); Pattern pattern; int algorithmFlags; }; CV_ChessboardDetectorTest::CV_ChessboardDetectorTest( Pattern _pattern, int _algorithmFlags ) { pattern = _pattern; algorithmFlags = _algorithmFlags; } double calcError(const vector& v, const Mat& u) { int count_exp = u.cols * u.rows; const Point2f* u_data = u.ptr(); double err = std::numeric_limits::max(); for( int k = 0; k < 2; ++k ) { double err1 = 0; for( int j = 0; j < count_exp; ++j ) { int j1 = k == 0 ? j : count_exp - j - 1; double dx = fabs( v[j].x - u_data[j1].x ); double dy = fabs( v[j].y - u_data[j1].y ); #if defined(_L2_ERR) err1 += dx*dx + dy*dy; #else dx = MAX( dx, dy ); if( dx > err1 ) err1 = dx; #endif //_L2_ERR //printf("dx = %f\n", dx); } //printf("\n"); err = min(err, err1); } #if defined(_L2_ERR) err = sqrt(err/count_exp); #endif //_L2_ERR return err; } const double rough_success_error_level = 2.5; const double precise_success_error_level = 2; /* ///////////////////// chess_corner_test ///////////////////////// */ void CV_ChessboardDetectorTest::run( int /*start_from */) { ts->set_failed_test_info( cvtest::TS::OK ); /*if (!checkByGenerator()) return;*/ switch( pattern ) { case CHESSBOARD_SB: checkByGeneratorHighAccuracy(); // not supported by CHESSBOARD /* fallthrough */ case CHESSBOARD: checkByGenerator(); if (ts->get_err_code() != cvtest::TS::OK) { break; } run_batch("negative_list.dat"); if (ts->get_err_code() != cvtest::TS::OK) { break; } run_batch("chessboard_list.dat"); if (ts->get_err_code() != cvtest::TS::OK) { break; } run_batch("chessboard_list_subpixel.dat"); break; case CIRCLES_GRID: run_batch("circles_list.dat"); break; case ASYMMETRIC_CIRCLES_GRID: run_batch("acircles_list.dat"); break; } } void CV_ChessboardDetectorTest::run_batch( const string& filename ) { ts->printf(cvtest::TS::LOG, "\nRunning batch %s\n", filename.c_str()); //#define WRITE_POINTS 1 #ifndef WRITE_POINTS double max_rough_error = 0, max_precise_error = 0; #endif string folder; switch( pattern ) { case CHESSBOARD: case CHESSBOARD_SB: folder = string(ts->get_data_path()) + "cv/cameracalibration/"; break; case CIRCLES_GRID: folder = string(ts->get_data_path()) + "cv/cameracalibration/circles/"; break; case ASYMMETRIC_CIRCLES_GRID: folder = string(ts->get_data_path()) + "cv/cameracalibration/asymmetric_circles/"; break; } FileStorage fs( folder + filename, FileStorage::READ ); FileNode board_list = fs["boards"]; if( !fs.isOpened() || board_list.empty() || !board_list.isSeq() || board_list.size() % 2 != 0 ) { ts->printf( cvtest::TS::LOG, "%s can not be read or is not valid\n", (folder + filename).c_str() ); ts->printf( cvtest::TS::LOG, "fs.isOpened=%d, board_list.empty=%d, board_list.isSeq=%d,board_list.size()%2=%d\n", fs.isOpened(), (int)board_list.empty(), board_list.isSeq(), board_list.size()%2); ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); return; } int progress = 0; int max_idx = (int)board_list.size()/2; double sum_error = 0.0; int count = 0; for(int idx = 0; idx < max_idx; ++idx ) { ts->update_context( this, idx, true ); /* read the image */ String img_file = board_list[idx * 2]; Mat gray = imread( folder + img_file, 0); if( gray.empty() ) { ts->printf( cvtest::TS::LOG, "one of chessboard images can't be read: %s\n", img_file.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); return; } String _filename = folder + (String)board_list[idx * 2 + 1]; bool doesContatinChessboard; float sharpness; Mat expected; { FileStorage fs1(_filename, FileStorage::READ); fs1["corners"] >> expected; fs1["isFound"] >> doesContatinChessboard; fs1["sharpness"] >> sharpness ; fs1.release(); } size_t count_exp = static_cast(expected.cols * expected.rows); Size pattern_size = expected.size(); vector v; int flags = 0; switch( pattern ) { case CHESSBOARD: flags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE; break; case CIRCLES_GRID: case CHESSBOARD_SB: case ASYMMETRIC_CIRCLES_GRID: default: flags = 0; } bool result = findChessboardCornersWrapper(gray, pattern_size,v,flags); if(result && sharpness && (pattern == CHESSBOARD_SB || pattern == CHESSBOARD)) { Scalar s= estimateChessboardSharpness(gray,pattern_size,v); if(fabs(s[0] - sharpness) > 0.1) { ts->printf(cvtest::TS::LOG, "chessboard image has a wrong sharpness in %s. Expected %f but measured %f\n", img_file.c_str(),sharpness,s[0]); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); show_points( gray, expected, v, result ); return; } } if(result ^ doesContatinChessboard || (doesContatinChessboard && v.size() != count_exp)) { ts->printf( cvtest::TS::LOG, "chessboard is detected incorrectly in %s\n", img_file.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); show_points( gray, expected, v, result ); return; } if( result ) { #ifndef WRITE_POINTS double err = calcError(v, expected); max_rough_error = MAX( max_rough_error, err ); #endif if( pattern == CHESSBOARD ) cornerSubPix( gray, v, Size(5, 5), Size(-1,-1), TermCriteria(TermCriteria::EPS|TermCriteria::MAX_ITER, 30, 0.1)); //find4QuadCornerSubpix(gray, v, Size(5, 5)); show_points( gray, expected, v, result ); #ifndef WRITE_POINTS // printf("called find4QuadCornerSubpix\n"); err = calcError(v, expected); sum_error += err; count++; if( err > precise_success_error_level ) { ts->printf( cvtest::TS::LOG, "Image %s: bad accuracy of adjusted corners %f\n", img_file.c_str(), err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } ts->printf(cvtest::TS::LOG, "Error on %s is %f\n", img_file.c_str(), err); max_precise_error = MAX( max_precise_error, err ); #endif } else { show_points( gray, Mat(), v, result ); } #ifdef WRITE_POINTS Mat mat_v(pattern_size, CV_32FC2, (void*)&v[0]); FileStorage fs(_filename, FileStorage::WRITE); fs << "isFound" << result; fs << "corners" << mat_v; fs.release(); #endif progress = update_progress( progress, idx, max_idx, 0 ); } if (count != 0) sum_error /= count; ts->printf(cvtest::TS::LOG, "Average error is %f (%d patterns have been found)\n", sum_error, count); } double calcErrorMinError(const Size& cornSz, const vector& corners_found, const vector& corners_generated) { Mat m1(cornSz, CV_32FC2, (Point2f*)&corners_generated[0]); Mat m2; flip(m1, m2, 0); Mat m3; flip(m1, m3, 1); m3 = m3.t(); flip(m3, m3, 1); Mat m4 = m1.t(); flip(m4, m4, 1); double min1 = min(calcError(corners_found, m1), calcError(corners_found, m2)); double min2 = min(calcError(corners_found, m3), calcError(corners_found, m4)); return min(min1, min2); } bool validateData(const ChessBoardGenerator& cbg, const Size& imgSz, const vector& corners_generated) { Size cornersSize = cbg.cornersSize(); Mat_ mat(cornersSize.height, cornersSize.width, (Point2f*)&corners_generated[0]); double minNeibDist = std::numeric_limits::max(); double tmp = 0; for(int i = 1; i < mat.rows - 2; ++i) for(int j = 1; j < mat.cols - 2; ++j) { const Point2f& cur = mat(i, j); tmp = cv::norm(cur - mat(i + 1, j + 1)); // TODO cvtest if (tmp < minNeibDist) minNeibDist = tmp; tmp = cv::norm(cur - mat(i - 1, j + 1)); // TODO cvtest if (tmp < minNeibDist) minNeibDist = tmp; tmp = cv::norm(cur - mat(i + 1, j - 1)); // TODO cvtest if (tmp < minNeibDist) minNeibDist = tmp; tmp = cv::norm(cur - mat(i - 1, j - 1)); // TODO cvtest if (tmp < minNeibDist) minNeibDist = tmp; } const double threshold = 0.25; double cbsize = (max(cornersSize.width, cornersSize.height) + 1) * minNeibDist; int imgsize = min(imgSz.height, imgSz.width); return imgsize * threshold < cbsize; } bool CV_ChessboardDetectorTest::findChessboardCornersWrapper(InputArray image, Size patternSize, OutputArray corners,int flags) { switch(pattern) { case CHESSBOARD: return findChessboardCorners(image,patternSize,corners,flags); case CHESSBOARD_SB: // check default settings until flags have been specified return findChessboardCornersSB(image,patternSize,corners,0); case ASYMMETRIC_CIRCLES_GRID: flags |= CALIB_CB_ASYMMETRIC_GRID | algorithmFlags; return findCirclesGrid(image, patternSize,corners,flags); case CIRCLES_GRID: flags |= CALIB_CB_SYMMETRIC_GRID; return findCirclesGrid(image, patternSize,corners,flags); default: ts->printf( cvtest::TS::LOG, "Internal Error: unsupported chessboard pattern" ); ts->set_failed_test_info( cvtest::TS::FAIL_GENERIC); } return false; } bool CV_ChessboardDetectorTest::checkByGenerator() { bool res = true; //theRNG() = 0x58e6e895b9913160; //cv::DefaultRngAuto dra; //theRNG() = *ts->get_rng(); Mat bg(Size(800, 600), CV_8UC3, Scalar::all(255)); randu(bg, Scalar::all(0), Scalar::all(255)); GaussianBlur(bg, bg, Size(5, 5), 0.0); Mat_ camMat(3, 3); camMat << 300.f, 0.f, bg.cols/2.f, 0, 300.f, bg.rows/2.f, 0.f, 0.f, 1.f; Mat_ distCoeffs(1, 5); distCoeffs << 1.2f, 0.2f, 0.f, 0.f, 0.f; const Size sizes[] = { Size(6, 6), Size(8, 6), Size(11, 12), Size(5, 4) }; const size_t sizes_num = sizeof(sizes)/sizeof(sizes[0]); const int test_num = 16; int progress = 0; for(int i = 0; i < test_num; ++i) { SCOPED_TRACE(cv::format("test_num=%d", test_num)); progress = update_progress( progress, i, test_num, 0 ); ChessBoardGenerator cbg(sizes[i % sizes_num]); vector corners_generated; Mat cb = cbg(bg, camMat, distCoeffs, corners_generated); if(!validateData(cbg, cb.size(), corners_generated)) { ts->printf( cvtest::TS::LOG, "Chess board skipped - too small" ); continue; } /*cb = cb * 0.8 + Scalar::all(30); GaussianBlur(cb, cb, Size(3, 3), 0.8); */ //cv::addWeighted(cb, 0.8, bg, 0.2, 20, cb); //cv::namedWindow("CB"); cv::imshow("CB", cb); cv::waitKey(); vector corners_found; int flags = i % 8; // need to check branches for all flags bool found = findChessboardCornersWrapper(cb, cbg.cornersSize(), corners_found, flags); if (!found) { ts->printf( cvtest::TS::LOG, "Chess board corners not found\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); res = false; return res; } double err = calcErrorMinError(cbg.cornersSize(), corners_found, corners_generated); EXPECT_LE(err, rough_success_error_level) << "bad accuracy of corner guesses"; #if 0 if (err >= rough_success_error_level) { imshow("cb", cb); Mat cb_corners = cb.clone(); cv::drawChessboardCorners(cb_corners, cbg.cornersSize(), Mat(corners_found), found); imshow("corners", cb_corners); waitKey(0); } #endif } /* ***** negative ***** */ { vector corners_found; bool found = findChessboardCornersWrapper(bg, Size(8, 7), corners_found,0); if (found) res = false; ChessBoardGenerator cbg(Size(8, 7)); vector cg; Mat cb = cbg(bg, camMat, distCoeffs, cg); found = findChessboardCornersWrapper(cb, Size(3, 4), corners_found,0); if (found) res = false; Point2f c = std::accumulate(cg.begin(), cg.end(), Point2f(), std::plus()) * (1.f/cg.size()); Mat_ aff(2, 3); aff << 1.0, 0.0, -(double)c.x, 0.0, 1.0, 0.0; Mat sh; warpAffine(cb, sh, aff, cb.size()); found = findChessboardCornersWrapper(sh, cbg.cornersSize(), corners_found,0); if (found) res = false; vector< vector > cnts(1); vector& cnt = cnts[0]; cnt.push_back(cg[ 0]); cnt.push_back(cg[0+2]); cnt.push_back(cg[7+0]); cnt.push_back(cg[7+2]); cv::drawContours(cb, cnts, -1, Scalar::all(128), FILLED); found = findChessboardCornersWrapper(cb, cbg.cornersSize(), corners_found,0); if (found) res = false; cv::drawChessboardCorners(cb, cbg.cornersSize(), Mat(corners_found), found); } return res; } // generates artificial checkerboards using warpPerspective which supports // subpixel rendering. The transformation is found by transferring corners to // the camera image using a virtual plane. bool CV_ChessboardDetectorTest::checkByGeneratorHighAccuracy() { // draw 2D pattern cv::Size pattern_size(6,5); int cell_size = 80; bool bwhite = true; cv::Mat image = cv::Mat::ones((pattern_size.height+3)*cell_size,(pattern_size.width+3)*cell_size,CV_8UC1)*255; cv::Mat pimage = image(Rect(cell_size,cell_size,(pattern_size.width+1)*cell_size,(pattern_size.height+1)*cell_size)); pimage = 0; for(int row=0;row<=pattern_size.height;++row) { int y = int(cell_size*row+0.5F); bool bwhite2 = bwhite; for(int col=0;col<=pattern_size.width;++col) { if(bwhite2) { int x = int(cell_size*col+0.5F); pimage(cv::Rect(x,y,cell_size,cell_size)) = 255; } bwhite2 = !bwhite2; } bwhite = !bwhite; } // generate 2d points std::vector pts1,pts2,pts1_all,pts2_all; std::vector pts3d; for(int row=0;rowprintf( cvtest::TS::LOG, "Internal Error: ray and plane are parallel" ); ts->set_failed_test_info( cvtest::TS::FAIL_GENERIC); return false; } pts3d.push_back(Point3f(ray/val1*cv::Vec3f((p0-l0)).dot(n))+l0); } // generate multiple rotations for(int i=15;i<90;i=i+15) { // project 3d points to new camera Vec3f rvec(0.0F,0.05F,float(float(i)/180.0*CV_PI)); Vec3f tvec(0,0,0); cv::Mat k = (cv::Mat_(3,3) << fx/2,0,center.x*2, 0,fy/2,center.y, 0,0,1); cv::projectPoints(pts3d,rvec,tvec,k,cv::Mat(),pts2_all); // get perspective transform using four correspondences and wrap original image pts1.clear(); pts2.clear(); pts1.push_back(pts1_all[0]); pts1.push_back(pts1_all[pattern_size.width-1]); pts1.push_back(pts1_all[pattern_size.width*pattern_size.height-1]); pts1.push_back(pts1_all[pattern_size.width*(pattern_size.height-1)]); pts2.push_back(pts2_all[0]); pts2.push_back(pts2_all[pattern_size.width-1]); pts2.push_back(pts2_all[pattern_size.width*pattern_size.height-1]); pts2.push_back(pts2_all[pattern_size.width*(pattern_size.height-1)]); Mat m2 = getPerspectiveTransform(pts1,pts2); Mat out(image.size(),image.type()); warpPerspective(image,out,m2,out.size()); // find checkerboard vector corners_found; bool found = findChessboardCornersWrapper(out,pattern_size,corners_found,0); if (!found) { ts->printf( cvtest::TS::LOG, "Chess board corners not found\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return false; } double err = calcErrorMinError(pattern_size,corners_found,pts2_all); if(err > 0.08) { ts->printf( cvtest::TS::LOG, "bad accuracy of corner guesses" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return false; } //cv::cvtColor(out,out,cv::COLOR_GRAY2BGR); //cv::drawChessboardCorners(out,pattern_size,corners_found,true); //cv::imshow("img",out); //cv::waitKey(-1); } return true; } TEST(Calib3d_ChessboardDetector, accuracy) { CV_ChessboardDetectorTest test( CHESSBOARD ); test.safe_run(); } TEST(Calib3d_ChessboardDetector2, accuracy) { CV_ChessboardDetectorTest test( CHESSBOARD_SB ); test.safe_run(); } TEST(Calib3d_CirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( CIRCLES_GRID ); test.safe_run(); } TEST(Calib3d_AsymmetricCirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID ); test.safe_run(); } #ifdef HAVE_OPENCV_FLANN TEST(Calib3d_AsymmetricCirclesPatternDetectorWithClustering, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID, CALIB_CB_CLUSTERING ); test.safe_run(); } #endif TEST(Calib3d_CirclesPatternDetectorWithClustering, accuracy) { cv::String dataDir = string(TS::ptr()->get_data_path()) + "cv/cameracalibration/circles/"; cv::Mat expected; FileStorage fs(dataDir + "circles_corners15.dat", FileStorage::READ); fs["corners"] >> expected; fs.release(); cv::Mat image = cv::imread(dataDir + "circles15.png"); std::vector centers; cv::findCirclesGrid(image, Size(10, 8), centers, CALIB_CB_SYMMETRIC_GRID | CALIB_CB_CLUSTERING); ASSERT_EQ(expected.total(), centers.size()); double error = calcError(centers, expected); ASSERT_LE(error, precise_success_error_level); } TEST(Calib3d_AsymmetricCirclesPatternDetector, regression_18713) { float pts_[][2] = { { 166.5, 107 }, { 146, 236 }, { 147, 92 }, { 184, 162 }, { 150, 185.5 }, { 215, 105 }, { 270.5, 186 }, { 159, 142 }, { 6, 205.5 }, { 32, 148.5 }, { 126, 163.5 }, { 181, 208.5 }, { 240.5, 62 }, { 84.5, 76.5 }, { 190, 120.5 }, { 10, 189 }, { 266, 104 }, { 307.5, 207.5 }, { 97, 184 }, { 116.5, 210 }, { 114, 139 }, { 84.5, 233 }, { 269.5, 139 }, { 136, 126.5 }, { 120, 107.5 }, { 129.5, 65.5 }, { 212.5, 140.5 }, { 204.5, 60.5 }, { 207.5, 241 }, { 61.5, 94.5 }, { 186.5, 61.5 }, { 220, 63 }, { 239, 120.5 }, { 212, 186 }, { 284, 87.5 }, { 62, 114.5 }, { 283, 61.5 }, { 238.5, 88.5 }, { 243, 159 }, { 245, 208 }, { 298.5, 158.5 }, { 57, 129 }, { 156.5, 63.5 }, { 192, 90.5 }, { 281, 235.5 }, { 172, 62.5 }, { 291.5, 119.5 }, { 90, 127 }, { 68.5, 166.5 }, { 108.5, 83.5 }, { 22, 176 } }; Mat candidates(51, 1, CV_32FC2, (void*)pts_); Size patternSize(4, 9); std::vector< Point2f > result; bool res = false; // issue reports about hangs EXPECT_NO_THROW(res = findCirclesGrid(candidates, patternSize, result, CALIB_CB_ASYMMETRIC_GRID, Ptr()/*blobDetector=NULL*/)); EXPECT_FALSE(res); if (cvtest::debugLevel > 0) { std::cout << Mat(candidates) << std::endl; std::cout << Mat(result) << std::endl; Mat img(Size(400, 300), CV_8UC3, Scalar::all(0)); std::vector< Point2f > centers; candidates.copyTo(centers); for (size_t i = 0; i < centers.size(); i++) { const Point2f& pt = centers[i]; //printf("{ %g, %g }, \n", pt.x, pt.y); circle(img, pt, 5, Scalar(0, 255, 0)); } for (size_t i = 0; i < result.size(); i++) { const Point2f& pt = result[i]; circle(img, pt, 10, Scalar(0, 0, 255)); } imwrite("test_18713.png", img); if (cvtest::debugLevel >= 10) { imshow("result", img); waitKey(); } } } TEST(Calib3d_AsymmetricCirclesPatternDetector, regression_19498) { float pts_[121][2] = { { 84.7462f, 404.504f }, { 49.1586f, 404.092f }, { 12.3362f, 403.434f }, { 102.542f, 386.214f }, { 67.6042f, 385.475f }, { 31.4982f, 384.569f }, { 141.231f, 377.856f }, { 332.834f, 370.745f }, { 85.7663f, 367.261f }, { 50.346f, 366.051f }, { 13.7726f, 364.663f }, { 371.746f, 362.011f }, { 68.8543f, 347.883f }, { 32.9334f, 346.263f }, { 331.926f, 343.291f }, { 351.535f, 338.112f }, { 51.7951f, 328.247f }, { 15.4613f, 326.095f }, { 311.719f, 319.578f }, { 330.947f, 313.708f }, { 256.706f, 307.584f }, { 34.6834f, 308.167f }, { 291.085f, 295.429f }, { 17.4316f, 287.824f }, { 252.928f, 277.92f }, { 270.19f, 270.93f }, { 288.473f, 263.484f }, { 216.401f, 260.94f }, { 232.195f, 253.656f }, { 266.757f, 237.708f }, { 211.323f, 229.005f }, { 227.592f, 220.498f }, { 154.749f, 188.52f }, { 222.52f, 184.906f }, { 133.85f, 163.968f }, { 200.024f, 158.05f }, { 147.485f, 153.643f }, { 161.967f, 142.633f }, { 177.396f, 131.059f }, { 125.909f, 128.116f }, { 139.817f, 116.333f }, { 91.8639f, 114.454f }, { 104.343f, 102.542f }, { 117.635f, 89.9116f }, { 70.9465f, 89.4619f }, { 82.8524f, 76.7862f }, { 131.738f, 76.4741f }, { 95.5012f, 63.3351f }, { 109.034f, 49.0424f }, { 314.886f, 374.711f }, { 351.735f, 366.489f }, { 279.113f, 357.05f }, { 313.371f, 348.131f }, { 260.123f, 335.271f }, { 276.346f, 330.325f }, { 293.588f, 325.133f }, { 240.86f, 313.143f }, { 273.436f, 301.667f }, { 206.762f, 296.574f }, { 309.877f, 288.796f }, { 187.46f, 274.319f }, { 201.521f, 267.804f }, { 248.973f, 245.918f }, { 181.644f, 244.655f }, { 196.025f, 237.045f }, { 148.41f, 229.131f }, { 161.604f, 221.215f }, { 175.455f, 212.873f }, { 244.748f, 211.459f }, { 128.661f, 206.109f }, { 190.217f, 204.108f }, { 141.346f, 197.568f }, { 205.876f, 194.781f }, { 168.937f, 178.948f }, { 121.006f, 173.714f }, { 183.998f, 168.806f }, { 88.9095f, 159.731f }, { 100.559f, 149.867f }, { 58.553f, 146.47f }, { 112.849f, 139.302f }, { 80.0968f, 125.74f }, { 39.24f, 123.671f }, { 154.582f, 103.85f }, { 59.7699f, 101.49f }, { 266.334f, 385.387f }, { 234.053f, 368.718f }, { 263.347f, 361.184f }, { 244.763f, 339.958f }, { 198.16f, 328.214f }, { 211.675f, 323.407f }, { 225.905f, 318.426f }, { 192.98f, 302.119f }, { 221.267f, 290.693f }, { 161.437f, 286.46f }, { 236.656f, 284.476f }, { 168.023f, 251.799f }, { 105.385f, 221.988f }, { 116.724f, 214.25f }, { 97.2959f, 191.81f }, { 108.89f, 183.05f }, { 77.9896f, 169.242f }, { 48.6763f, 156.088f }, { 68.9635f, 136.415f }, { 29.8484f, 133.886f }, { 49.1966f, 112.826f }, { 113.059f, 29.003f }, { 251.698f, 388.562f }, { 281.689f, 381.929f }, { 297.875f, 378.518f }, { 248.376f, 365.025f }, { 295.791f, 352.763f }, { 216.176f, 348.586f }, { 230.143f, 344.443f }, { 179.89f, 307.457f }, { 174.083f, 280.51f }, { 142.867f, 265.085f }, { 155.127f, 258.692f }, { 124.187f, 243.661f }, { 136.01f, 236.553f }, { 86.4651f, 200.13f }, { 67.5711f, 178.221f } }; Mat candidates(121, 1, CV_32FC2, (void*)pts_); Size patternSize(13, 8); std::vector< Point2f > result; bool res = false; EXPECT_NO_THROW(res = findCirclesGrid(candidates, patternSize, result, CALIB_CB_SYMMETRIC_GRID, Ptr()/*blobDetector=NULL*/)); EXPECT_FALSE(res); } }} // namespace /* End of file. */