YOLO DNNs {#tutorial_dnn_yolo} =============================== @tableofcontents @prev_tutorial{tutorial_dnn_android} @next_tutorial{tutorial_dnn_javascript} | | | | -: | :- | | Original author | Alessandro de Oliveira Faria | | Compatibility | OpenCV >= 3.3.1 | Introduction ------------ In this text you will learn how to use opencv_dnn module using yolo_object_detection (Sample of using OpenCV dnn module in real time with device capture, video and image). We will demonstrate results of this example on the following picture. ![Picture example](images/yolo.jpg) Examples -------- VIDEO DEMO: @youtube{NHtRlndE2cg} Source Code ----------- Use a universal sample for object detection models written [in C++](https://github.com/opencv/opencv/blob/4.x/samples/dnn/object_detection.cpp) and [in Python](https://github.com/opencv/opencv/blob/4.x/samples/dnn/object_detection.py) languages Usage examples -------------- Execute in webcam: @code{.bash} $ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --rgb @endcode Execute with image or video file: @code{.bash} $ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --input=[PATH-TO-IMAGE-OR-VIDEO-FILE] --rgb @endcode Questions and suggestions email to: Alessandro de Oliveira Faria cabelo@opensuse.org or OpenCV Team.