123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup op_var
- //! @{
- //! \brief
- //! For each row or for each column, find the variance.
- //! The result is stored in a dense matrix that has either one column or one row.
- //! The dimension, for which the variances are found, is set via the var() function.
- template<typename T1>
- inline
- void
- op_var::apply(Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_var>& in)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type in_eT;
- typedef typename T1::pod_type out_eT;
-
- const unwrap_check_mixed<T1> tmp(in.m, out);
- const Mat<in_eT>& X = tmp.M;
-
- const uword norm_type = in.aux_uword_a;
- const uword dim = in.aux_uword_b;
-
- arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
- arma_debug_check( (dim > 1), "var(): parameter 'dim' must be 0 or 1" );
-
- const uword X_n_rows = X.n_rows;
- const uword X_n_cols = X.n_cols;
-
- if(dim == 0)
- {
- arma_extra_debug_print("op_var::apply(): dim = 0");
-
- out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols);
-
- if(X_n_rows > 0)
- {
- out_eT* out_mem = out.memptr();
-
- for(uword col=0; col<X_n_cols; ++col)
- {
- out_mem[col] = op_var::direct_var( X.colptr(col), X_n_rows, norm_type );
- }
- }
- }
- else
- if(dim == 1)
- {
- arma_extra_debug_print("op_var::apply(): dim = 1");
-
- out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0);
-
- if(X_n_cols > 0)
- {
- podarray<in_eT> dat(X_n_cols);
-
- in_eT* dat_mem = dat.memptr();
- out_eT* out_mem = out.memptr();
-
- for(uword row=0; row<X_n_rows; ++row)
- {
- dat.copy_row(X, row);
-
- out_mem[row] = op_var::direct_var( dat_mem, X_n_cols, norm_type );
- }
- }
- }
- }
- template<typename T1>
- inline
- typename T1::pod_type
- op_var::var_vec(const Base<typename T1::elem_type, T1>& X, const uword norm_type)
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
-
- const quasi_unwrap<T1> U(X.get_ref());
-
- return op_var::direct_var(U.M.memptr(), U.M.n_elem, norm_type);
- }
- template<typename eT>
- inline
- typename get_pod_type<eT>::result
- op_var::var_vec(const subview_col<eT>& X, const uword norm_type)
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
-
- return op_var::direct_var(X.colptr(0), X.n_rows, norm_type);
- }
- template<typename eT>
- inline
- typename get_pod_type<eT>::result
- op_var::var_vec(const subview_row<eT>& X, const uword norm_type)
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
-
- const Mat<eT>& A = X.m;
-
- const uword start_row = X.aux_row1;
- const uword start_col = X.aux_col1;
-
- const uword end_col_p1 = start_col + X.n_cols;
-
- podarray<eT> tmp(X.n_elem);
- eT* tmp_mem = tmp.memptr();
-
- for(uword i=0, col=start_col; col < end_col_p1; ++col, ++i)
- {
- tmp_mem[i] = A.at(start_row, col);
- }
-
- return op_var::direct_var(tmp.memptr(), tmp.n_elem, norm_type);
- }
- //! find the variance of an array
- template<typename eT>
- inline
- eT
- op_var::direct_var(const eT* const X, const uword n_elem, const uword norm_type)
- {
- arma_extra_debug_sigprint();
-
- if(n_elem >= 2)
- {
- const eT acc1 = op_mean::direct_mean(X, n_elem);
-
- eT acc2 = eT(0);
- eT acc3 = eT(0);
-
- uword i,j;
-
- for(i=0, j=1; j<n_elem; i+=2, j+=2)
- {
- const eT Xi = X[i];
- const eT Xj = X[j];
-
- const eT tmpi = acc1 - Xi;
- const eT tmpj = acc1 - Xj;
-
- acc2 += tmpi*tmpi + tmpj*tmpj;
- acc3 += tmpi + tmpj;
- }
-
- if(i < n_elem)
- {
- const eT Xi = X[i];
-
- const eT tmpi = acc1 - Xi;
-
- acc2 += tmpi*tmpi;
- acc3 += tmpi;
- }
-
- const eT norm_val = (norm_type == 0) ? eT(n_elem-1) : eT(n_elem);
- const eT var_val = (acc2 - acc3*acc3/eT(n_elem)) / norm_val;
-
- return arma_isfinite(var_val) ? var_val : op_var::direct_var_robust(X, n_elem, norm_type);
- }
- else
- {
- return eT(0);
- }
- }
- //! find the variance of an array (robust but slow)
- template<typename eT>
- inline
- eT
- op_var::direct_var_robust(const eT* const X, const uword n_elem, const uword norm_type)
- {
- arma_extra_debug_sigprint();
-
- if(n_elem > 1)
- {
- eT r_mean = X[0];
- eT r_var = eT(0);
-
- for(uword i=1; i<n_elem; ++i)
- {
- const eT tmp = X[i] - r_mean;
- const eT i_plus_1 = eT(i+1);
-
- r_var = eT(i-1)/eT(i) * r_var + (tmp*tmp)/i_plus_1;
-
- r_mean = r_mean + tmp/i_plus_1;
- }
-
- return (norm_type == 0) ? r_var : (eT(n_elem-1)/eT(n_elem)) * r_var;
- }
- else
- {
- return eT(0);
- }
- }
- //! find the variance of an array (version for complex numbers)
- template<typename T>
- inline
- T
- op_var::direct_var(const std::complex<T>* const X, const uword n_elem, const uword norm_type)
- {
- arma_extra_debug_sigprint();
-
- typedef typename std::complex<T> eT;
-
- if(n_elem >= 2)
- {
- const eT acc1 = op_mean::direct_mean(X, n_elem);
-
- T acc2 = T(0);
- eT acc3 = eT(0);
-
- for(uword i=0; i<n_elem; ++i)
- {
- const eT tmp = acc1 - X[i];
-
- acc2 += std::norm(tmp);
- acc3 += tmp;
- }
-
- const T norm_val = (norm_type == 0) ? T(n_elem-1) : T(n_elem);
- const T var_val = (acc2 - std::norm(acc3)/T(n_elem)) / norm_val;
-
- return arma_isfinite(var_val) ? var_val : op_var::direct_var_robust(X, n_elem, norm_type);
- }
- else
- {
- return T(0);
- }
- }
- //! find the variance of an array (version for complex numbers) (robust but slow)
- template<typename T>
- inline
- T
- op_var::direct_var_robust(const std::complex<T>* const X, const uword n_elem, const uword norm_type)
- {
- arma_extra_debug_sigprint();
-
- typedef typename std::complex<T> eT;
-
- if(n_elem > 1)
- {
- eT r_mean = X[0];
- T r_var = T(0);
-
- for(uword i=1; i<n_elem; ++i)
- {
- const eT tmp = X[i] - r_mean;
- const T i_plus_1 = T(i+1);
-
- r_var = T(i-1)/T(i) * r_var + std::norm(tmp)/i_plus_1;
-
- r_mean = r_mean + tmp/i_plus_1;
- }
-
- return (norm_type == 0) ? r_var : (T(n_elem-1)/T(n_elem)) * r_var;
- }
- else
- {
- return T(0);
- }
- }
- //! @}
|