123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup sympd_helper
- //! @{
- namespace sympd_helper
- {
- // computationally inexpensive algorithm to guess whether a matrix is positive definite:
- // (1) ensure the matrix is symmetric/hermitian (within a tolerance)
- // (2) ensure the diagonal entries are real and greater than zero
- // (3) ensure that the value with largest modulus is on the main diagonal
- // (4) ensure rudimentary diagonal dominance: (real(A_ii) + real(A_jj)) > 2*abs(real(A_ij))
- // the above conditions are necessary, but not sufficient;
- // doing it properly would be too computationally expensive for our purposes
- // more info:
- // http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
- // http://mathworld.wolfram.com/DiagonallyDominantMatrix.html
-
- template<uword threshold, typename eT>
- inline
- typename enable_if2<is_cx<eT>::no, bool>::result
- guess_sympd_worker(const Mat<eT>& A)
- {
- arma_extra_debug_sigprint();
-
- if((A.n_rows != A.n_cols) || (A.n_rows < threshold)) { return false; }
-
- const eT tol = eT(100) * std::numeric_limits<eT>::epsilon(); // allow some leeway
-
- const uword N = A.n_rows;
-
- const eT* A_mem = A.memptr();
- const eT* A_col = A_mem;
-
- eT max_diag = eT(0);
-
- for(uword j=0; j < N; ++j)
- {
- const eT A_jj = A_col[j];
-
- if(A_jj <= eT(0)) { return false; }
-
- max_diag = (A_jj > max_diag) ? A_jj : max_diag;
-
- A_col += N;
- }
-
- A_col = A_mem;
-
- const uword Nm1 = N-1;
- const uword Np1 = N+1;
-
- for(uword j=0; j < Nm1; ++j)
- {
- const eT A_jj = A_col[j];
-
- const uword jp1 = j+1;
- const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1));
- const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]);
-
- for(uword i=jp1; i < N; ++i)
- {
- const eT A_ij = A_col[i];
- const eT A_ji = (*A_ji_ptr);
-
- const eT A_ij_abs = (std::abs)(A_ij);
- const eT A_ji_abs = (std::abs)(A_ji);
-
- // if( (A_ij_abs >= max_diag) || (A_ji_abs >= max_diag) ) { return false; }
- if(A_ij_abs >= max_diag) { return false; }
-
- const eT A_delta = (std::abs)(A_ij - A_ji);
- const eT A_abs_max = (std::max)(A_ij_abs, A_ji_abs);
-
- if( (A_delta > tol) && (A_delta > (A_abs_max*tol)) ) { return false; }
-
- const eT A_ii = (*A_ii_ptr);
-
- if( (A_ij_abs + A_ij_abs) >= (A_ii + A_jj) ) { return false; }
-
- A_ji_ptr += N;
- A_ii_ptr += Np1;
- }
-
- A_col += N;
- }
-
- return true;
- }
- template<uword threshold, typename eT>
- inline
- typename enable_if2<is_cx<eT>::yes, bool>::result
- guess_sympd_worker(const Mat<eT>& A)
- {
- arma_extra_debug_sigprint();
-
- typedef typename get_pod_type<eT>::result T;
-
- if((A.n_rows != A.n_cols) || (A.n_rows < threshold)) { return false; }
-
- const T tol = T(100) * std::numeric_limits<T>::epsilon(); // allow some leeway
-
- const uword N = A.n_rows;
-
- const eT* A_mem = A.memptr();
- const eT* A_col = A_mem;
-
- T max_diag = T(0);
-
- for(uword j=0; j < N; ++j)
- {
- const eT& A_jj = A_col[j];
- const T A_jj_real = std::real(A_jj);
- const T A_jj_imag = std::imag(A_jj);
-
- if( (A_jj_real <= T(0)) || (std::abs(A_jj_imag) > tol) ) { return false; }
-
- max_diag = (A_jj_real > max_diag) ? A_jj_real : max_diag;
-
- A_col += N;
- }
-
- const T square_max_diag = max_diag * max_diag;
-
- if(arma_isfinite(square_max_diag) == false) { return false; }
-
- A_col = A_mem;
-
- const uword Nm1 = N-1;
- const uword Np1 = N+1;
-
- for(uword j=0; j < Nm1; ++j)
- {
- const uword jp1 = j+1;
- const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1));
- const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]);
-
- const T A_jj_real = std::real(A_col[j]);
-
- for(uword i=jp1; i < N; ++i)
- {
- const eT& A_ij = A_col[i];
- const T A_ij_real = std::real(A_ij);
- const T A_ij_imag = std::imag(A_ij);
-
- // avoid using std::abs(), as that is time consuming due to division and std::sqrt()
- const T square_A_ij_abs = (A_ij_real * A_ij_real) + (A_ij_imag * A_ij_imag);
-
- if(arma_isfinite(square_A_ij_abs) == false) { return false; }
-
- if(square_A_ij_abs >= square_max_diag) { return false; }
-
- const T A_ij_real_abs = (std::abs)(A_ij_real);
- const T A_ij_imag_abs = (std::abs)(A_ij_imag);
-
-
- const eT& A_ji = (*A_ji_ptr);
- const T A_ji_real = std::real(A_ji);
- const T A_ji_imag = std::imag(A_ji);
-
- const T A_ji_real_abs = (std::abs)(A_ji_real);
- const T A_ji_imag_abs = (std::abs)(A_ji_imag);
-
- const T A_real_delta = (std::abs)(A_ij_real - A_ji_real);
- const T A_real_abs_max = (std::max)(A_ij_real_abs, A_ji_real_abs);
-
- if( (A_real_delta > tol) && (A_real_delta > (A_real_abs_max*tol)) ) { return false; }
-
-
- const T A_imag_delta = (std::abs)(A_ij_imag + A_ji_imag); // take into account complex conjugate
- const T A_imag_abs_max = (std::max)(A_ij_imag_abs, A_ji_imag_abs);
-
- if( (A_imag_delta > tol) && (A_imag_delta > (A_imag_abs_max*tol)) ) { return false; }
-
-
- const T A_ii_real = std::real(*A_ii_ptr);
-
- if( (A_ij_real_abs + A_ij_real_abs) >= (A_ii_real + A_jj_real) ) { return false; }
-
- A_ji_ptr += N;
- A_ii_ptr += Np1;
- }
-
- A_col += N;
- }
-
- return true;
- }
- template<typename eT>
- inline
- bool
- guess_sympd(const Mat<eT>& A)
- {
- // analyse matrices with size >= 16x16
- return guess_sympd_worker<16u>(A);
- }
- template<typename eT>
- inline
- bool
- guess_sympd_anysize(const Mat<eT>& A)
- {
- // analyse matrices with size >= 2x2
-
- return guess_sympd_worker<2u>(A);
- }
- } // end of namespace sympd_helper
- //! @}
|