123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup op_sqrtmat
- //! @{
- //! implementation partly based on:
- //! N. J. Higham.
- //! A New sqrtm for Matlab.
- //! Numerical Analysis Report No. 336, January 1999.
- //! Department of Mathematics, University of Manchester.
- //! ISSN 1360-1725
- //! http://www.maths.manchester.ac.uk/~higham/narep/narep336.ps.gz
- template<typename T1>
- inline
- void
- op_sqrtmat::apply(Mat< std::complex<typename T1::elem_type> >& out, const mtOp<std::complex<typename T1::elem_type>,T1,op_sqrtmat>& in)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_sqrtmat::apply_direct(out, in.m);
-
- if(status == false)
- {
- arma_debug_warn("sqrtmat(): given matrix seems singular; may not have a square root");
- }
- }
- template<typename T1>
- inline
- bool
- op_sqrtmat::apply_direct(Mat< std::complex<typename T1::elem_type> >& out, const Op<T1,op_diagmat>& expr)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type T;
-
- const diagmat_proxy<T1> P(expr.m);
-
- arma_debug_check( (P.n_rows != P.n_cols), "sqrtmat(): given matrix must be square sized" );
-
- const uword N = P.n_rows;
-
- out.zeros(N,N);
-
- bool singular = false;
-
- for(uword i=0; i<N; ++i)
- {
- const T val = P[i];
-
- if(val >= T(0))
- {
- singular = (singular || (val == T(0)));
-
- out.at(i,i) = std::sqrt(val);
- }
- else
- {
- out.at(i,i) = std::sqrt( std::complex<T>(val) );
- }
- }
-
- return (singular) ? false : true;
- }
- template<typename T1>
- inline
- bool
- op_sqrtmat::apply_direct(Mat< std::complex<typename T1::elem_type> >& out, const Base<typename T1::elem_type,T1>& expr)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type in_T;
- typedef typename std::complex<in_T> out_T;
-
- const quasi_unwrap<T1> expr_unwrap(expr.get_ref());
- const Mat<in_T>& A = expr_unwrap.M;
-
- arma_debug_check( (A.is_square() == false), "sqrtmat(): given matrix must be square sized" );
-
- if(A.n_elem == 0)
- {
- out.reset();
- return true;
- }
- else
- if(A.n_elem == 1)
- {
- out.set_size(1,1);
- out[0] = std::sqrt( std::complex<in_T>( A[0] ) );
- return true;
- }
-
- if(A.is_diagmat())
- {
- const uword N = A.n_rows;
-
- out.zeros(N,N); // aliasing can't happen as op_sqrtmat is defined as cx_mat = op(mat)
-
- for(uword i=0; i<N; ++i)
- {
- const in_T val = A.at(i,i);
-
- if(val >= in_T(0))
- {
- out.at(i,i) = std::sqrt(val);
- }
- else
- {
- out.at(i,i) = std::sqrt( out_T(val) );
- }
- }
-
- return true;
- }
-
- #if defined(ARMA_OPTIMISE_SYMPD)
- const bool try_sympd = sympd_helper::guess_sympd_anysize(A);
- #else
- const bool try_sympd = false;
- #endif
-
- if(try_sympd)
- {
- // if matrix A is sympd, all its eigenvalues are positive
-
- Col<in_T> eigval;
- Mat<in_T> eigvec;
-
- const bool eig_status = eig_sym_helper(eigval, eigvec, A, 'd', "sqrtmat()");
-
- if(eig_status)
- {
- // ensure each eigenvalue is > 0
-
- const uword N = eigval.n_elem;
- const in_T* eigval_mem = eigval.memptr();
-
- bool all_pos = true;
-
- for(uword i=0; i<N; ++i) { all_pos = (eigval_mem[i] <= in_T(0)) ? false : all_pos; }
-
- if(all_pos)
- {
- eigval = sqrt(eigval);
-
- out = conv_to< Mat<out_T> >::from( eigvec * diagmat(eigval) * eigvec.t() );
-
- return true;
- }
- }
-
- arma_extra_debug_print("warning: sympd optimisation failed");
-
- // fallthrough if eigen decomposition failed or an eigenvalue is zero
- }
-
-
- Mat<out_T> U;
- Mat<out_T> S(A.n_rows, A.n_cols);
-
- const in_T* Amem = A.memptr();
- out_T* Smem = S.memptr();
-
- const uword n_elem = A.n_elem;
-
- for(uword i=0; i<n_elem; ++i)
- {
- Smem[i] = std::complex<in_T>( Amem[i] );
- }
-
- const bool schur_ok = auxlib::schur(U,S);
-
- if(schur_ok == false)
- {
- arma_extra_debug_print("sqrtmat(): schur decomposition failed");
- out.soft_reset();
- return false;
- }
-
- const bool status = op_sqrtmat_cx::helper(S);
-
- const Mat<out_T> X = U*S;
-
- S.reset();
-
- out = X*U.t();
-
- return status;
- }
- template<typename T1>
- inline
- void
- op_sqrtmat_cx::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_sqrtmat_cx>& in)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_sqrtmat_cx::apply_direct(out, in.m);
-
- if(status == false)
- {
- arma_debug_warn("sqrtmat(): given matrix seems singular; may not have a square root");
- }
- }
- template<typename T1>
- inline
- bool
- op_sqrtmat_cx::apply_direct(Mat<typename T1::elem_type>& out, const Op<T1,op_diagmat>& expr)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
-
- const diagmat_proxy<T1> P(expr.m);
-
- bool status = false;
-
- if(P.is_alias(out))
- {
- Mat<eT> tmp;
-
- status = op_sqrtmat_cx::apply_direct_noalias(tmp, P);
-
- out.steal_mem(tmp);
- }
- else
- {
- status = op_sqrtmat_cx::apply_direct_noalias(out, P);
- }
-
- return status;
- }
- template<typename T1>
- inline
- bool
- op_sqrtmat_cx::apply_direct_noalias(Mat<typename T1::elem_type>& out, const diagmat_proxy<T1>& P)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
-
- arma_debug_check( (P.n_rows != P.n_cols), "sqrtmat(): given matrix must be square sized" );
-
- const uword N = P.n_rows;
-
- out.zeros(N,N);
-
- const eT zero = eT(0);
-
- bool singular = false;
-
- for(uword i=0; i<N; ++i)
- {
- const eT val = P[i];
-
- singular = (singular || (val == zero));
-
- out.at(i,i) = std::sqrt(val);
- }
-
- return (singular) ? false : true;
- }
- template<typename T1>
- inline
- bool
- op_sqrtmat_cx::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::pod_type T;
- typedef typename T1::elem_type eT;
-
- Mat<eT> U;
- Mat<eT> S = expr.get_ref();
-
- arma_debug_check( (S.n_rows != S.n_cols), "sqrtmat(): given matrix must be square sized" );
-
- if(S.n_elem == 0)
- {
- out.reset();
- return true;
- }
- else
- if(S.n_elem == 1)
- {
- out.set_size(1,1);
- out[0] = std::sqrt(S[0]);
- return true;
- }
-
- if(S.is_diagmat())
- {
- const uword N = S.n_rows;
-
- out.zeros(N,N); // aliasing can't happen as S is generated
-
- for(uword i=0; i<N; ++i) { out.at(i,i) = std::sqrt( S.at(i,i) ); }
-
- return true;
- }
-
- #if defined(ARMA_OPTIMISE_SYMPD)
- const bool try_sympd = sympd_helper::guess_sympd_anysize(S);
- #else
- const bool try_sympd = false;
- #endif
-
- if(try_sympd)
- {
- // if matrix S is sympd, all its eigenvalues are positive
-
- Col< T> eigval;
- Mat<eT> eigvec;
-
- const bool eig_status = eig_sym_helper(eigval, eigvec, S, 'd', "sqrtmat()");
-
- if(eig_status)
- {
- // ensure each eigenvalue is > 0
-
- const uword N = eigval.n_elem;
- const T* eigval_mem = eigval.memptr();
-
- bool all_pos = true;
-
- for(uword i=0; i<N; ++i) { all_pos = (eigval_mem[i] <= T(0)) ? false : all_pos; }
-
- if(all_pos)
- {
- eigval = sqrt(eigval);
-
- out = eigvec * diagmat(eigval) * eigvec.t();
-
- return true;
- }
- }
-
- arma_extra_debug_print("warning: sympd optimisation failed");
-
- // fallthrough if eigen decomposition failed or an eigenvalue is zero
- }
-
- const bool schur_ok = auxlib::schur(U, S);
-
- if(schur_ok == false)
- {
- arma_extra_debug_print("sqrtmat(): schur decomposition failed");
- out.soft_reset();
- return false;
- }
-
- const bool status = op_sqrtmat_cx::helper(S);
-
- const Mat<eT> X = U*S;
-
- S.reset();
-
- out = X*U.t();
-
- return status;
- }
- template<typename T>
- inline
- bool
- op_sqrtmat_cx::helper(Mat< std::complex<T> >& S)
- {
- typedef typename std::complex<T> eT;
-
- if(S.is_empty()) { return true; }
-
- const uword N = S.n_rows;
-
- const eT zero = eT(0);
-
- eT& S_00 = S[0];
-
- bool singular = (S_00 == zero);
-
- S_00 = std::sqrt(S_00);
-
- for(uword j=1; j < N; ++j)
- {
- eT* S_j = S.colptr(j);
-
- eT& S_jj = S_j[j];
-
- singular = (singular || (S_jj == zero));
-
- S_jj = std::sqrt(S_jj);
-
- for(uword ii=0; ii <= (j-1); ++ii)
- {
- const uword i = (j-1) - ii;
-
- const eT* S_i = S.colptr(i);
-
- //S_j[i] /= (S_i[i] + S_j[j]);
- S_j[i] /= (S_i[i] + S_jj);
-
- for(uword k=0; k < i; ++k)
- {
- S_j[k] -= S_i[k] * S_j[i];
- }
- }
- }
-
- return (singular) ? false : true;
- }
- template<typename T1>
- inline
- void
- op_sqrtmat_sympd::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_sqrtmat_sympd>& in)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_sqrtmat_sympd::apply_direct(out, in.m);
-
- if(status == false)
- {
- out.soft_reset();
- arma_stop_runtime_error("sqrtmat_sympd(): transformation failed");
- }
- }
- template<typename T1>
- inline
- bool
- op_sqrtmat_sympd::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr)
- {
- arma_extra_debug_sigprint();
-
- #if defined(ARMA_USE_LAPACK)
- {
- typedef typename T1::pod_type T;
- typedef typename T1::elem_type eT;
-
- const unwrap<T1> U(expr.get_ref());
- const Mat<eT>& X = U.M;
-
- arma_debug_check( (X.is_square() == false), "sqrtmat_sympd(): given matrix must be square sized" );
-
- Col< T> eigval;
- Mat<eT> eigvec;
-
- const bool status = eig_sym_helper(eigval, eigvec, X, 'd', "sqrtmat_sympd()");
-
- if(status == false) { return false; }
-
- const uword N = eigval.n_elem;
- const T* eigval_mem = eigval.memptr();
-
- bool all_pos = true;
-
- for(uword i=0; i<N; ++i) { all_pos = (eigval_mem[i] < T(0)) ? false : all_pos; }
-
- if(all_pos == false) { return false; }
-
- eigval = sqrt(eigval);
-
- out = eigvec * diagmat(eigval) * eigvec.t();
-
- return true;
- }
- #else
- {
- arma_ignore(out);
- arma_ignore(expr);
- arma_stop_logic_error("sqrtmat_sympd(): use of LAPACK must be enabled");
- return false;
- }
- #endif
- }
- //! @}
|