123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup op_princomp
- //! @{
- //! \brief
- //! principal component analysis -- 4 arguments version
- //! computation is done via singular value decomposition
- //! coeff_out -> principal component coefficients
- //! score_out -> projected samples
- //! latent_out -> eigenvalues of principal vectors
- //! tsquared_out -> Hotelling's T^2 statistic
- template<typename T1>
- inline
- bool
- op_princomp::direct_princomp
- (
- Mat<typename T1::elem_type>& coeff_out,
- Mat<typename T1::elem_type>& score_out,
- Col<typename T1::pod_type>& latent_out,
- Col<typename T1::elem_type>& tsquared_out,
- const Base<typename T1::elem_type, T1>& X
- )
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- const unwrap_check<T1> Y( X.get_ref(), score_out );
- const Mat<eT>& in = Y.M;
- const uword n_rows = in.n_rows;
- const uword n_cols = in.n_cols;
-
- if(n_rows > 1) // more than one sample
- {
- // subtract the mean - use score_out as temporary matrix
- score_out = in; score_out.each_row() -= mean(in);
-
- // singular value decomposition
- Mat<eT> U;
- Col< T> s;
-
- const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out);
-
- if(svd_ok == false) { return false; }
-
- // normalize the eigenvalues
- s /= std::sqrt( double(n_rows - 1) );
-
- // project the samples to the principals
- score_out *= coeff_out;
-
- if(n_rows <= n_cols) // number of samples is less than their dimensionality
- {
- score_out.cols(n_rows-1,n_cols-1).zeros();
-
- Col<T> s_tmp(n_cols, fill::zeros);
-
- s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2);
- s = s_tmp;
-
- // compute the Hotelling's T-squared
- s_tmp.rows(0,n_rows-2) = T(1) / s_tmp.rows(0,n_rows-2);
-
- const Mat<eT> S = score_out * diagmat(Col<T>(s_tmp));
- tsquared_out = sum(S%S,1);
- }
- else
- {
- // compute the Hotelling's T-squared
- // TODO: replace with more robust approach
- const Mat<eT> S = score_out * diagmat(Col<T>( T(1) / s));
- tsquared_out = sum(S%S,1);
- }
-
- // compute the eigenvalues of the principal vectors
- latent_out = s%s;
- }
- else // 0 or 1 samples
- {
- coeff_out.eye(n_cols, n_cols);
-
- score_out.copy_size(in);
- score_out.zeros();
-
- latent_out.set_size(n_cols);
- latent_out.zeros();
-
- tsquared_out.set_size(n_rows);
- tsquared_out.zeros();
- }
-
- return true;
- }
- //! \brief
- //! principal component analysis -- 3 arguments version
- //! computation is done via singular value decomposition
- //! coeff_out -> principal component coefficients
- //! score_out -> projected samples
- //! latent_out -> eigenvalues of principal vectors
- template<typename T1>
- inline
- bool
- op_princomp::direct_princomp
- (
- Mat<typename T1::elem_type>& coeff_out,
- Mat<typename T1::elem_type>& score_out,
- Col<typename T1::pod_type>& latent_out,
- const Base<typename T1::elem_type, T1>& X
- )
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- const unwrap_check<T1> Y( X.get_ref(), score_out );
- const Mat<eT>& in = Y.M;
-
- const uword n_rows = in.n_rows;
- const uword n_cols = in.n_cols;
-
- if(n_rows > 1) // more than one sample
- {
- // subtract the mean - use score_out as temporary matrix
- score_out = in; score_out.each_row() -= mean(in);
-
- // singular value decomposition
- Mat<eT> U;
- Col< T> s;
-
- const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out);
-
- if(svd_ok == false) { return false; }
-
- // normalize the eigenvalues
- s /= std::sqrt( double(n_rows - 1) );
-
- // project the samples to the principals
- score_out *= coeff_out;
-
- if(n_rows <= n_cols) // number of samples is less than their dimensionality
- {
- score_out.cols(n_rows-1,n_cols-1).zeros();
-
- Col<T> s_tmp(n_cols, fill::zeros);
-
- s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2);
- s = s_tmp;
- }
-
- // compute the eigenvalues of the principal vectors
- latent_out = s%s;
- }
- else // 0 or 1 samples
- {
- coeff_out.eye(n_cols, n_cols);
-
- score_out.copy_size(in);
- score_out.zeros();
-
- latent_out.set_size(n_cols);
- latent_out.zeros();
- }
-
- return true;
- }
- //! \brief
- //! principal component analysis -- 2 arguments version
- //! computation is done via singular value decomposition
- //! coeff_out -> principal component coefficients
- //! score_out -> projected samples
- template<typename T1>
- inline
- bool
- op_princomp::direct_princomp
- (
- Mat<typename T1::elem_type>& coeff_out,
- Mat<typename T1::elem_type>& score_out,
- const Base<typename T1::elem_type, T1>& X
- )
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- const unwrap_check<T1> Y( X.get_ref(), score_out );
- const Mat<eT>& in = Y.M;
-
- const uword n_rows = in.n_rows;
- const uword n_cols = in.n_cols;
-
- if(n_rows > 1) // more than one sample
- {
- // subtract the mean - use score_out as temporary matrix
- score_out = in; score_out.each_row() -= mean(in);
-
- // singular value decomposition
- Mat<eT> U;
- Col< T> s;
-
- const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out);
-
- if(svd_ok == false) { return false; }
-
- // project the samples to the principals
- score_out *= coeff_out;
-
- if(n_rows <= n_cols) // number of samples is less than their dimensionality
- {
- score_out.cols(n_rows-1,n_cols-1).zeros();
- }
- }
- else // 0 or 1 samples
- {
- coeff_out.eye(n_cols, n_cols);
- score_out.copy_size(in);
- score_out.zeros();
- }
-
- return true;
- }
- //! \brief
- //! principal component analysis -- 1 argument version
- //! computation is done via singular value decomposition
- //! coeff_out -> principal component coefficients
- template<typename T1>
- inline
- bool
- op_princomp::direct_princomp
- (
- Mat<typename T1::elem_type>& coeff_out,
- const Base<typename T1::elem_type, T1>& X
- )
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- const unwrap<T1> Y( X.get_ref() );
- const Mat<eT>& in = Y.M;
-
- if(in.n_elem != 0)
- {
- Mat<eT> tmp = in; tmp.each_row() -= mean(in);
-
- // singular value decomposition
- Mat<eT> U;
- Col< T> s;
-
- const bool svd_ok = (in.n_rows >= in.n_cols) ? svd_econ(U, s, coeff_out, tmp) : svd(U, s, coeff_out, tmp);
-
- if(svd_ok == false) { return false; }
- }
- else
- {
- coeff_out.eye(in.n_cols, in.n_cols);
- }
-
- return true;
- }
- template<typename T1>
- inline
- void
- op_princomp::apply
- (
- Mat<typename T1::elem_type>& out,
- const Op<T1,op_princomp>& in
- )
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
-
- const unwrap_check<T1> tmp(in.m, out);
- const Mat<eT>& A = tmp.M;
-
- const bool status = op_princomp::direct_princomp(out, A);
-
- if(status == false)
- {
- out.soft_reset();
-
- arma_stop_runtime_error("princomp(): decomposition failed");
- }
- }
- //! @}
|