123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup op_median
- //! @{
- //! \brief
- //! For each row or for each column, find the median value.
- //! The result is stored in a dense matrix that has either one column or one row.
- //! The dimension, for which the medians are found, is set via the median() function.
- template<typename eT, typename T1>
- inline
- void
- op_median::apply(Mat<eT>& out, const Op<T1,op_median>& in, const typename arma_not_cx<eT>::result* junk)
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- // typedef typename T1::elem_type eT;
-
- const uword dim = in.aux_uword_a;
- arma_debug_check( (dim > 1), "median(): parameter 'dim' must be 0 or 1" );
-
- const Proxy<T1> P(in.m);
-
- typedef typename Proxy<T1>::stored_type P_stored_type;
-
- const bool is_alias = P.is_alias(out);
-
- if(is_Mat<P_stored_type>::value || is_alias)
- {
- const unwrap_check<P_stored_type> tmp(P.Q, is_alias);
-
- const typename unwrap_check<P_stored_type>::stored_type& X = tmp.M;
-
- const uword X_n_rows = X.n_rows;
- const uword X_n_cols = X.n_cols;
-
- if(dim == 0) // in each column
- {
- arma_extra_debug_print("op_median::apply(): dim = 0");
-
- out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols);
-
- if(X_n_rows > 0)
- {
- std::vector<eT> tmp_vec(X_n_rows);
-
- for(uword col=0; col < X_n_cols; ++col)
- {
- arrayops::copy( &(tmp_vec[0]), X.colptr(col), X_n_rows );
-
- out[col] = op_median::direct_median(tmp_vec);
- }
- }
- }
- else // in each row
- {
- arma_extra_debug_print("op_median::apply(): dim = 1");
-
- out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0);
-
- if(X_n_cols > 0)
- {
- std::vector<eT> tmp_vec(X_n_cols);
-
- for(uword row=0; row < X_n_rows; ++row)
- {
- for(uword col=0; col < X_n_cols; ++col) { tmp_vec[col] = X.at(row,col); }
-
- out[row] = op_median::direct_median(tmp_vec);
- }
- }
- }
- }
- else
- {
- const uword P_n_rows = P.get_n_rows();
- const uword P_n_cols = P.get_n_cols();
-
- if(dim == 0) // in each column
- {
- arma_extra_debug_print("op_median::apply(): dim = 0");
-
- out.set_size((P_n_rows > 0) ? 1 : 0, P_n_cols);
-
- if(P_n_rows > 0)
- {
- std::vector<eT> tmp_vec(P_n_rows);
-
- for(uword col=0; col < P_n_cols; ++col)
- {
- for(uword row=0; row < P_n_rows; ++row) { tmp_vec[row] = P.at(row,col); }
-
- out[col] = op_median::direct_median(tmp_vec);
- }
- }
- }
- else // in each row
- {
- arma_extra_debug_print("op_median::apply(): dim = 1");
-
- out.set_size(P_n_rows, (P_n_cols > 0) ? 1 : 0);
-
- if(P_n_cols > 0)
- {
- std::vector<eT> tmp_vec(P_n_cols);
-
- for(uword row=0; row < P_n_rows; ++row)
- {
- for(uword col=0; col < P_n_cols; ++col) { tmp_vec[col] = P.at(row,col); }
-
- out[row] = op_median::direct_median(tmp_vec);
- }
- }
- }
- }
- }
- //! Implementation for complex numbers
- template<typename eT, typename T1>
- inline
- void
- op_median::apply(Mat<eT>& out, const Op<T1,op_median>& in, const typename arma_cx_only<eT>::result* junk)
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- // typedef typename std::complex<T> eT;
- typedef typename get_pod_type<eT>::result T;
-
- arma_type_check(( is_same_type<eT, typename T1::elem_type>::no ));
-
- const unwrap_check<T1> tmp(in.m, out);
- const Mat<eT>& X = tmp.M;
-
- const uword X_n_rows = X.n_rows;
- const uword X_n_cols = X.n_cols;
-
- const uword dim = in.aux_uword_a;
- arma_debug_check( (dim > 1), "median(): parameter 'dim' must be 0 or 1" );
-
- if(dim == 0) // in each column
- {
- arma_extra_debug_print("op_median::apply(): dim = 0");
-
- out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols);
-
- if(X_n_rows > 0)
- {
- std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_rows);
-
- for(uword col=0; col<X_n_cols; ++col)
- {
- const eT* colmem = X.colptr(col);
-
- for(uword row=0; row<X_n_rows; ++row)
- {
- tmp_vec[row].val = std::abs(colmem[row]);
- tmp_vec[row].index = row;
- }
-
- uword index1;
- uword index2;
- op_median::direct_cx_median_index(index1, index2, tmp_vec);
-
- out[col] = op_mean::robust_mean(colmem[index1], colmem[index2]);
- }
- }
- }
- else
- if(dim == 1) // in each row
- {
- arma_extra_debug_print("op_median::apply(): dim = 1");
-
- out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0);
-
- if(X_n_cols > 0)
- {
- std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_cols);
-
- for(uword row=0; row<X_n_rows; ++row)
- {
- for(uword col=0; col<X_n_cols; ++col)
- {
- tmp_vec[col].val = std::abs(X.at(row,col));
- tmp_vec[col].index = col;
- }
-
- uword index1;
- uword index2;
- op_median::direct_cx_median_index(index1, index2, tmp_vec);
-
- out[row] = op_mean::robust_mean( X.at(row,index1), X.at(row,index2) );
- }
- }
- }
- }
- template<typename T1>
- inline
- typename T1::elem_type
- op_median::median_vec
- (
- const T1& X,
- const typename arma_not_cx<typename T1::elem_type>::result* junk
- )
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- typedef typename T1::elem_type eT;
-
- typedef typename Proxy<T1>::stored_type P_stored_type;
-
- const Proxy<T1> P(X);
-
- const uword n_elem = P.get_n_elem();
-
- if(n_elem == 0)
- {
- arma_debug_check(true, "median(): object has no elements");
-
- return Datum<eT>::nan;
- }
-
- std::vector<eT> tmp_vec(n_elem);
-
- if(is_Mat<P_stored_type>::value)
- {
- const unwrap<P_stored_type> tmp(P.Q);
-
- const typename unwrap<P_stored_type>::stored_type& Y = tmp.M;
-
- arrayops::copy( &(tmp_vec[0]), Y.memptr(), n_elem );
- }
- else
- {
- if(Proxy<T1>::use_at == false)
- {
- typedef typename Proxy<T1>::ea_type ea_type;
-
- ea_type A = P.get_ea();
-
- for(uword i=0; i<n_elem; ++i) { tmp_vec[i] = A[i]; }
- }
- else
- {
- const uword n_rows = P.get_n_rows();
- const uword n_cols = P.get_n_cols();
-
- if(n_cols == 1)
- {
- for(uword row=0; row < n_rows; ++row) { tmp_vec[row] = P.at(row,0); }
- }
- else
- if(n_rows == 1)
- {
- for(uword col=0; col < n_cols; ++col) { tmp_vec[col] = P.at(0,col); }
- }
- else
- {
- arma_stop_logic_error("op_median::median_vec(): expected a vector" );
- }
- }
- }
-
- return op_median::direct_median(tmp_vec);
- }
- template<typename T1>
- inline
- typename T1::elem_type
- op_median::median_vec
- (
- const T1& X,
- const typename arma_cx_only<typename T1::elem_type>::result* junk
- )
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- const Proxy<T1> P(X);
-
- const uword n_elem = P.get_n_elem();
-
- if(n_elem == 0)
- {
- arma_debug_check(true, "median(): object has no elements");
-
- return Datum<eT>::nan;
- }
-
- std::vector< arma_cx_median_packet<T> > tmp_vec(n_elem);
-
- if(Proxy<T1>::use_at == false)
- {
- typedef typename Proxy<T1>::ea_type ea_type;
-
- ea_type A = P.get_ea();
-
- for(uword i=0; i<n_elem; ++i)
- {
- tmp_vec[i].val = std::abs( A[i] );
- tmp_vec[i].index = i;
- }
-
- uword index1;
- uword index2;
- op_median::direct_cx_median_index(index1, index2, tmp_vec);
-
- return op_mean::robust_mean( A[index1], A[index2] );
- }
- else
- {
- const uword n_rows = P.get_n_rows();
- const uword n_cols = P.get_n_cols();
-
- if(n_cols == 1)
- {
- for(uword row=0; row < n_rows; ++row)
- {
- tmp_vec[row].val = std::abs( P.at(row,0) );
- tmp_vec[row].index = row;
- }
-
- uword index1;
- uword index2;
- op_median::direct_cx_median_index(index1, index2, tmp_vec);
-
- return op_mean::robust_mean( P.at(index1,0), P.at(index2,0) );
- }
- else
- if(n_rows == 1)
- {
- for(uword col=0; col < n_cols; ++col)
- {
- tmp_vec[col].val = std::abs( P.at(0,col) );
- tmp_vec[col].index = col;
- }
-
- uword index1;
- uword index2;
- op_median::direct_cx_median_index(index1, index2, tmp_vec);
-
- return op_mean::robust_mean( P.at(0,index1), P.at(0,index2) );
- }
- else
- {
- arma_stop_logic_error("op_median::median_vec(): expected a vector" );
-
- return eT(0);
- }
- }
- }
- //! find the median value of a std::vector (contents is modified)
- template<typename eT>
- inline
- eT
- op_median::direct_median(std::vector<eT>& X)
- {
- arma_extra_debug_sigprint();
-
- const uword n_elem = uword(X.size());
- const uword half = n_elem/2;
-
- typename std::vector<eT>::iterator first = X.begin();
- typename std::vector<eT>::iterator nth = first + half;
- typename std::vector<eT>::iterator pastlast = X.end();
-
- std::nth_element(first, nth, pastlast);
-
- if((n_elem % 2) == 0) // even number of elements
- {
- typename std::vector<eT>::iterator start = X.begin();
- typename std::vector<eT>::iterator pastend = start + half;
-
- const eT val1 = (*nth);
- const eT val2 = (*(std::max_element(start, pastend)));
-
- return op_mean::robust_mean(val1, val2);
- }
- else // odd number of elements
- {
- return (*nth);
- }
- }
- template<typename T>
- inline
- void
- op_median::direct_cx_median_index
- (
- uword& out_index1,
- uword& out_index2,
- std::vector< arma_cx_median_packet<T> >& X
- )
- {
- arma_extra_debug_sigprint();
-
- typedef arma_cx_median_packet<T> eT;
-
- const uword n_elem = uword(X.size());
- const uword half = n_elem/2;
-
- typename std::vector<eT>::iterator first = X.begin();
- typename std::vector<eT>::iterator nth = first + half;
- typename std::vector<eT>::iterator pastlast = X.end();
-
- std::nth_element(first, nth, pastlast);
-
- out_index1 = (*nth).index;
-
- if((n_elem % 2) == 0) // even number of elements
- {
- typename std::vector<eT>::iterator start = X.begin();
- typename std::vector<eT>::iterator pastend = start + half;
-
- out_index2 = (*(std::max_element(start, pastend))).index;
- }
- else // odd number of elements
- {
- out_index2 = out_index1;
- }
- }
- //! @}
|