123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup op_logmat
- //! @{
- // Partly based on algorithm 11.9 (inverse scaling and squaring algorithm with Schur decomposition) in:
- // Nicholas J. Higham.
- // Functions of Matrices: Theory and Computation.
- // SIAM, 2008.
- // ISBN 978-0-89871-646-7
- template<typename T1>
- inline
- void
- op_logmat::apply(Mat< std::complex<typename T1::elem_type> >& out, const mtOp<std::complex<typename T1::elem_type>,T1,op_logmat>& in)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_logmat::apply_direct(out, in.m, in.aux_uword_a);
-
- if(status == false)
- {
- out.soft_reset();
- arma_stop_runtime_error("logmat(): transformation failed");
- }
- }
- template<typename T1>
- inline
- bool
- op_logmat::apply_direct(Mat< std::complex<typename T1::elem_type> >& out, const Op<T1,op_diagmat>& expr, const uword)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type T;
-
- const diagmat_proxy<T1> P(expr.m);
-
- arma_debug_check( (P.n_rows != P.n_cols), "logmat(): given matrix must be square sized" );
-
- const uword N = P.n_rows;
-
- out.zeros(N,N); // aliasing can't happen as op_logmat is defined as cx_mat = op(mat)
-
- for(uword i=0; i<N; ++i)
- {
- const T val = P[i];
-
- if(val >= T(0))
- {
- out.at(i,i) = std::log(val);
- }
- else
- {
- out.at(i,i) = std::log( std::complex<T>(val) );
- }
- }
-
- return true;
- }
- template<typename T1>
- inline
- bool
- op_logmat::apply_direct(Mat< std::complex<typename T1::elem_type> >& out, const Base<typename T1::elem_type,T1>& expr, const uword n_iters)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type in_T;
- typedef typename std::complex<in_T> out_T;
-
- const quasi_unwrap<T1> expr_unwrap(expr.get_ref());
- const Mat<in_T>& A = expr_unwrap.M;
-
- arma_debug_check( (A.is_square() == false), "logmat(): given matrix must be square sized" );
-
- if(A.n_elem == 0)
- {
- out.reset();
- return true;
- }
- else
- if(A.n_elem == 1)
- {
- out.set_size(1,1);
- out[0] = std::log( std::complex<in_T>( A[0] ) );
- return true;
- }
-
- if(A.is_diagmat())
- {
- const uword N = A.n_rows;
-
- out.zeros(N,N); // aliasing can't happen as op_logmat is defined as cx_mat = op(mat)
-
- for(uword i=0; i<N; ++i)
- {
- const in_T val = A.at(i,i);
-
- if(val >= in_T(0))
- {
- out.at(i,i) = std::log(val);
- }
- else
- {
- out.at(i,i) = std::log( out_T(val) );
- }
- }
-
- return true;
- }
-
- #if defined(ARMA_OPTIMISE_SYMPD)
- const bool try_sympd = sympd_helper::guess_sympd_anysize(A);
- #else
- const bool try_sympd = false;
- #endif
-
- if(try_sympd)
- {
- // if matrix A is sympd, all its eigenvalues are positive
-
- Col<in_T> eigval;
- Mat<in_T> eigvec;
-
- const bool eig_status = eig_sym_helper(eigval, eigvec, A, 'd', "logmat()");
-
- if(eig_status)
- {
- // ensure each eigenvalue is > 0
-
- const uword N = eigval.n_elem;
- const in_T* eigval_mem = eigval.memptr();
-
- bool all_pos = true;
-
- for(uword i=0; i<N; ++i) { all_pos = (eigval_mem[i] <= in_T(0)) ? false : all_pos; }
-
- if(all_pos)
- {
- eigval = log(eigval);
-
- out = conv_to< Mat<out_T> >::from( eigvec * diagmat(eigval) * eigvec.t() );
-
- return true;
- }
- }
-
- arma_extra_debug_print("warning: sympd optimisation failed");
-
- // fallthrough if eigen decomposition failed or an eigenvalue is zero
- }
-
-
- Mat<out_T> S(A.n_rows, A.n_cols);
-
- const in_T* Amem = A.memptr();
- out_T* Smem = S.memptr();
-
- const uword n_elem = A.n_elem;
-
- for(uword i=0; i<n_elem; ++i)
- {
- Smem[i] = std::complex<in_T>( Amem[i] );
- }
-
- return op_logmat_cx::apply_common(out, S, n_iters);
- }
- template<typename T1>
- inline
- void
- op_logmat_cx::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_logmat_cx>& in)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_logmat_cx::apply_direct(out, in.m, in.aux_uword_a);
-
- if(status == false)
- {
- out.soft_reset();
- arma_stop_runtime_error("logmat(): transformation failed");
- }
- }
- template<typename T1>
- inline
- bool
- op_logmat_cx::apply_direct(Mat<typename T1::elem_type>& out, const Op<T1,op_diagmat>& expr, const uword)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
-
- const diagmat_proxy<T1> P(expr.m);
-
- bool status = false;
-
- if(P.is_alias(out))
- {
- Mat<eT> tmp;
-
- status = op_logmat_cx::apply_direct_noalias(tmp, P);
-
- out.steal_mem(tmp);
- }
- else
- {
- status = op_logmat_cx::apply_direct_noalias(out, P);
- }
-
- return status;
- }
- template<typename T1>
- inline
- bool
- op_logmat_cx::apply_direct_noalias(Mat<typename T1::elem_type>& out, const diagmat_proxy<T1>& P)
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (P.n_rows != P.n_cols), "logmat(): given matrix must be square sized" );
-
- const uword N = P.n_rows;
-
- out.zeros(N,N);
-
- for(uword i=0; i<N; ++i)
- {
- out.at(i,i) = std::log(P[i]);
- }
-
- return true;
- }
- template<typename T1>
- inline
- bool
- op_logmat_cx::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr, const uword n_iters)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::pod_type T;
- typedef typename T1::elem_type eT;
-
- Mat<eT> S = expr.get_ref();
-
- arma_debug_check( (S.n_rows != S.n_cols), "logmat(): given matrix must be square sized" );
-
- if(S.n_elem == 0)
- {
- out.reset();
- return true;
- }
- else
- if(S.n_elem == 1)
- {
- out.set_size(1,1);
- out[0] = std::log(S[0]);
- return true;
- }
-
- if(S.is_diagmat())
- {
- const uword N = S.n_rows;
-
- out.zeros(N,N); // aliasing can't happen as S is generated
-
- for(uword i=0; i<N; ++i) { out.at(i,i) = std::log( S.at(i,i) ); }
-
- return true;
- }
-
- #if defined(ARMA_OPTIMISE_SYMPD)
- const bool try_sympd = sympd_helper::guess_sympd_anysize(S);
- #else
- const bool try_sympd = false;
- #endif
-
- if(try_sympd)
- {
- // if matrix S is sympd, all its eigenvalues are positive
-
- Col< T> eigval;
- Mat<eT> eigvec;
-
- const bool eig_status = eig_sym_helper(eigval, eigvec, S, 'd', "logmat()");
-
- if(eig_status)
- {
- // ensure each eigenvalue is > 0
-
- const uword N = eigval.n_elem;
- const T* eigval_mem = eigval.memptr();
-
- bool all_pos = true;
-
- for(uword i=0; i<N; ++i) { all_pos = (eigval_mem[i] <= T(0)) ? false : all_pos; }
-
- if(all_pos)
- {
- eigval = log(eigval);
-
- out = eigvec * diagmat(eigval) * eigvec.t();
-
- return true;
- }
- }
-
- arma_extra_debug_print("warning: sympd optimisation failed");
-
- // fallthrough if eigen decomposition failed or an eigenvalue is zero
- }
-
- return op_logmat_cx::apply_common(out, S, n_iters);
- }
- template<typename T>
- inline
- bool
- op_logmat_cx::apply_common(Mat< std::complex<T> >& out, Mat< std::complex<T> >& S, const uword n_iters)
- {
- arma_extra_debug_sigprint();
-
- typedef typename std::complex<T> eT;
-
- Mat<eT> U;
-
- const bool schur_ok = auxlib::schur(U,S);
-
- if(schur_ok == false) { arma_extra_debug_print("logmat(): schur decomposition failed"); return false; }
-
- //double theta[] = { 1.10e-5, 1.82e-3, 1.62e-2, 5.39e-2, 1.14e-1, 1.87e-1, 2.64e-1 };
- double theta[] = { 0.0, 0.0, 1.6206284795015624e-2, 5.3873532631381171e-2, 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
- // theta[0] and theta[1] not really used
-
- const uword N = S.n_rows;
-
- uword p = 0;
- uword m = 6;
-
- uword iter = 0;
-
- while(iter < n_iters)
- {
- const T tau = norm( (S - eye< Mat<eT> >(N,N)), 1 );
-
- if(tau <= theta[6])
- {
- p++;
-
- uword j1 = 0;
- uword j2 = 0;
-
- for(uword i=2; i<=6; ++i) { if( tau <= theta[i]) { j1 = i; break; } }
- for(uword i=2; i<=6; ++i) { if((tau/2.0) <= theta[i]) { j2 = i; break; } }
-
- // sanity check, for development purposes only
- arma_debug_check( (j2 > j1), "internal error: op_logmat::apply_direct(): j2 > j1" );
-
- if( ((j1 - j2) <= 1) || (p == 2) ) { m = j1; break; }
- }
-
- const bool sqrtmat_ok = op_sqrtmat_cx::apply_direct(S,S);
-
- if(sqrtmat_ok == false) { arma_extra_debug_print("logmat(): sqrtmat() failed"); return false; }
-
- iter++;
- }
-
- if(iter >= n_iters) { arma_debug_warn("logmat(): reached max iterations without full convergence"); }
-
- S.diag() -= eT(1);
-
- if(m >= 1)
- {
- const bool helper_ok = op_logmat_cx::helper(S,m);
-
- if(helper_ok == false) { return false; }
- }
-
- out = U * S * U.t();
-
- out *= eT(eop_aux::pow(double(2), double(iter)));
-
- return true;
- }
- template<typename eT>
- inline
- bool
- op_logmat_cx::helper(Mat<eT>& A, const uword m)
- {
- arma_extra_debug_sigprint();
-
- if(A.is_finite() == false) { return false; }
-
- const vec indices = regspace<vec>(1,m-1);
-
- mat tmp(m,m,fill::zeros);
-
- tmp.diag(-1) = indices / sqrt(square(2.0*indices) - 1.0);
- tmp.diag(+1) = indices / sqrt(square(2.0*indices) - 1.0);
-
- vec eigval;
- mat eigvec;
-
- const bool eig_ok = eig_sym_helper(eigval, eigvec, tmp, 'd', "logmat()");
-
- if(eig_ok == false) { arma_extra_debug_print("logmat(): eig_sym() failed"); return false; }
-
- const vec nodes = (eigval + 1.0) / 2.0;
- const vec weights = square(eigvec.row(0).t());
-
- const uword N = A.n_rows;
-
- Mat<eT> B(N,N,fill::zeros);
-
- Mat<eT> X;
-
- for(uword i=0; i < m; ++i)
- {
- // B += weights(i) * solve( (nodes(i)*A + eye< Mat<eT> >(N,N)), A );
-
- //const bool solve_ok = solve( X, (nodes(i)*A + eye< Mat<eT> >(N,N)), A, solve_opts::fast );
- const bool solve_ok = solve( X, trimatu(nodes(i)*A + eye< Mat<eT> >(N,N)), A );
-
- if(solve_ok == false) { arma_extra_debug_print("logmat(): solve() failed"); return false; }
-
- B += weights(i) * X;
- }
-
- A = B;
-
- return true;
- }
- template<typename T1>
- inline
- void
- op_logmat_sympd::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_logmat_sympd>& in)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_logmat_sympd::apply_direct(out, in.m);
-
- if(status == false)
- {
- out.soft_reset();
- arma_stop_runtime_error("logmat_sympd(): transformation failed");
- }
- }
- template<typename T1>
- inline
- bool
- op_logmat_sympd::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr)
- {
- arma_extra_debug_sigprint();
-
- #if defined(ARMA_USE_LAPACK)
- {
- typedef typename T1::pod_type T;
- typedef typename T1::elem_type eT;
-
- const unwrap<T1> U(expr.get_ref());
- const Mat<eT>& X = U.M;
-
- arma_debug_check( (X.is_square() == false), "logmat_sympd(): given matrix must be square sized" );
-
- Col< T> eigval;
- Mat<eT> eigvec;
-
- const bool status = eig_sym_helper(eigval, eigvec, X, 'd', "logmat_sympd()");
-
- if(status == false) { return false; }
-
- const uword N = eigval.n_elem;
- const T* eigval_mem = eigval.memptr();
-
- bool all_pos = true;
-
- for(uword i=0; i<N; ++i) { all_pos = (eigval_mem[i] <= T(0)) ? false : all_pos; }
-
- if(all_pos == false) { return false; }
-
- eigval = log(eigval);
-
- out = eigvec * diagmat(eigval) * eigvec.t();
-
- return true;
- }
- #else
- {
- arma_ignore(out);
- arma_ignore(expr);
- arma_stop_logic_error("logmat_sympd(): use of LAPACK must be enabled");
- return false;
- }
- #endif
- }
- //! @}
|