123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup op_expmat
- //! @{
- //! implementation based on:
- //! Cleve Moler, Charles Van Loan.
- //! Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later.
- //! SIAM Review, Vol. 45, No. 1, 2003, pp. 3-49.
- //! http://dx.doi.org/10.1137/S00361445024180
- template<typename T1>
- inline
- void
- op_expmat::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_expmat>& expr)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_expmat::apply_direct(out, expr.m);
-
- if(status == false)
- {
- out.soft_reset();
- arma_stop_runtime_error("expmat(): given matrix appears ill-conditioned");
- }
- }
- template<typename T1>
- inline
- bool
- op_expmat::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type, T1>& expr)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- if(is_op_diagmat<T1>::value)
- {
- out = expr.get_ref(); // force the evaluation of diagmat()
-
- arma_debug_check( (out.is_square() == false), "expmat(): given matrix must be square sized" );
-
- const uword N = (std::min)(out.n_rows, out.n_cols);
-
- for(uword i=0; i<N; ++i) { out.at(i,i) = std::exp( out.at(i,i) ); }
- }
- else
- {
- Mat<eT> A = expr.get_ref();
-
- arma_debug_check( (A.is_square() == false), "expmat(): given matrix must be square sized" );
-
- if(A.is_diagmat())
- {
- const uword N = (std::min)(A.n_rows, A.n_cols);
-
- out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { out.at(i,i) = std::exp( A.at(i,i) ); }
-
- return true;
- }
-
- #if defined(ARMA_OPTIMISE_SYMPD)
- const bool try_sympd = sympd_helper::guess_sympd_anysize(A);
- #else
- const bool try_sympd = false;
- #endif
-
- if(try_sympd)
- {
- // if matrix A is sympd, all its eigenvalues are positive
-
- Col< T> eigval;
- Mat<eT> eigvec;
-
- const bool eig_status = eig_sym_helper(eigval, eigvec, A, 'd', "expmat()");
-
- if(eig_status)
- {
- eigval = exp(eigval);
-
- out = eigvec * diagmat(eigval) * eigvec.t();
-
- return true;
- }
-
- arma_extra_debug_print("warning: sympd optimisation failed");
-
- // fallthrough if eigen decomposition failed
- }
-
- const T norm_val = arma::norm(A, "inf");
-
- const double log2_val = (norm_val > T(0)) ? double(eop_aux::log2(norm_val)) : double(0);
-
- int exponent = int(0); std::frexp(log2_val, &exponent);
-
- const uword s = uword( (std::max)(int(0), exponent + int(1)) );
-
- A /= eT(eop_aux::pow(double(2), double(s)));
-
- T c = T(0.5);
-
- Mat<eT> E(A.n_rows, A.n_rows, fill::eye); E += c * A;
- Mat<eT> D(A.n_rows, A.n_rows, fill::eye); D -= c * A;
-
- Mat<eT> X = A;
-
- bool positive = true;
-
- const uword N = 6;
-
- for(uword i = 2; i <= N; ++i)
- {
- c = c * T(N - i + 1) / T(i * (2*N - i + 1));
-
- X = A * X;
-
- E += c * X;
-
- if(positive) { D += c * X; } else { D -= c * X; }
-
- positive = (positive) ? false : true;
- }
-
- if( (D.is_finite() == false) || (E.is_finite() == false) ) { return false; }
-
- const bool status = solve(out, D, E);
-
- if(status == false) { return false; }
-
- for(uword i=0; i < s; ++i) { out = out * out; }
- }
-
- return true;
- }
- template<typename T1>
- inline
- void
- op_expmat_sym::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_expmat_sym>& in)
- {
- arma_extra_debug_sigprint();
-
- const bool status = op_expmat_sym::apply_direct(out, in.m);
-
- if(status == false)
- {
- out.soft_reset();
- arma_stop_runtime_error("expmat_sym(): transformation failed");
- }
- }
- template<typename T1>
- inline
- bool
- op_expmat_sym::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr)
- {
- arma_extra_debug_sigprint();
-
- #if defined(ARMA_USE_LAPACK)
- {
- typedef typename T1::pod_type T;
- typedef typename T1::elem_type eT;
-
- const unwrap<T1> U(expr.get_ref());
- const Mat<eT>& X = U.M;
-
- arma_debug_check( (X.is_square() == false), "expmat_sym(): given matrix must be square sized" );
-
- Col< T> eigval;
- Mat<eT> eigvec;
-
- const bool status = eig_sym_helper(eigval, eigvec, X, 'd', "expmat_sym()");
-
- if(status == false) { return false; }
-
- eigval = exp(eigval);
-
- out = eigvec * diagmat(eigval) * eigvec.t();
-
- return true;
- }
- #else
- {
- arma_ignore(out);
- arma_ignore(expr);
- arma_stop_logic_error("expmat_sym(): use of LAPACK must be enabled");
- return false;
- }
- #endif
- }
- //! @}
|