123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup op_diagmat
- //! @{
- template<typename T1>
- inline
- void
- op_diagmat::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagmat>& X)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
-
- if(is_Mat<T1>::value)
- {
- // allow detection of in-place operation
-
- const unwrap<T1> U(X.m);
- const Mat<eT>& A = U.M;
-
- if(&out != &A) // no aliasing
- {
- const Proxy< Mat<eT> > P(A);
-
- op_diagmat::apply(out, P);
- }
- else // we have aliasing
- {
- const uword n_rows = out.n_rows;
- const uword n_cols = out.n_cols;
-
- if((n_rows == 1) || (n_cols == 1)) // create diagonal matrix from vector
- {
- const eT* out_mem = out.memptr();
- const uword N = out.n_elem;
-
- Mat<eT> tmp(N,N); tmp.zeros();
-
- for(uword i=0; i<N; ++i) { tmp.at(i,i) = out_mem[i]; }
-
- out.steal_mem(tmp);
- }
- else // create diagonal matrix from matrix
- {
- const uword N = (std::min)(n_rows, n_cols);
-
- for(uword i=0; i < n_cols; ++i)
- {
- if(i < N)
- {
- eT& out_ii = out.at(i,i);
-
- const eT val = out_ii;
-
- arrayops::fill_zeros(out.colptr(i), n_rows);
-
- out_ii = val;
- }
- else
- {
- arrayops::fill_zeros(out.colptr(i), n_rows);
- }
- }
- }
- }
- }
- else
- {
- const Proxy<T1> P(X.m);
-
- if(P.is_alias(out))
- {
- Mat<eT> tmp;
-
- op_diagmat::apply(tmp, P);
-
- out.steal_mem(tmp);
- }
- else
- {
- op_diagmat::apply(out, P);
- }
- }
- }
- template<typename T1>
- inline
- void
- op_diagmat::apply(Mat<typename T1::elem_type>& out, const Proxy<T1>& P)
- {
- arma_extra_debug_sigprint();
-
- const uword n_rows = P.get_n_rows();
- const uword n_cols = P.get_n_cols();
- const uword n_elem = P.get_n_elem();
-
- if(n_elem == 0) { out.reset(); return; }
-
- const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1);
-
- if(P_is_vec)
- {
- out.zeros(n_elem, n_elem);
-
- if(Proxy<T1>::use_at == false)
- {
- typename Proxy<T1>::ea_type Pea = P.get_ea();
-
- for(uword i=0; i < n_elem; ++i) { out.at(i,i) = Pea[i]; }
- }
- else
- {
- if(n_rows == 1)
- {
- for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(0,i); }
- }
- else
- {
- for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(i,0); }
- }
- }
- }
- else // P represents a matrix
- {
- out.zeros(n_rows, n_cols);
-
- const uword N = (std::min)(n_rows, n_cols);
-
- for(uword i=0; i<N; ++i) { out.at(i,i) = P.at(i,i); }
- }
- }
- template<typename T1, typename T2>
- inline
- void
- op_diagmat::apply(Mat<typename T1::elem_type>& out, const Op< Glue<T1,T2,glue_times>, op_diagmat>& X)
- {
- arma_extra_debug_sigprint();
-
- op_diagmat::apply_times(out, X.m.A, X.m.B);
- }
- template<typename T1, typename T2>
- inline
- void
- op_diagmat::apply_times(Mat<typename T1::elem_type>& actual_out, const T1& X, const T2& Y, const typename arma_not_cx<typename T1::elem_type>::result* junk)
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- typedef typename T1::elem_type eT;
-
- const partial_unwrap<T1> UA(X);
- const partial_unwrap<T2> UB(Y);
-
- const typename partial_unwrap<T1>::stored_type& A = UA.M;
- const typename partial_unwrap<T2>::stored_type& B = UB.M;
-
- arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
-
- const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times;
- const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0);
-
- const uword A_n_rows = A.n_rows;
- const uword A_n_cols = A.n_cols;
- const uword B_n_rows = B.n_rows;
- const uword B_n_cols = B.n_cols;
-
- // check if the multiplication results in a vector
-
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
- {
- if((A_n_rows == 1) || (B_n_cols == 1))
- {
- arma_extra_debug_print("trans_A = false; trans_B = false; vector result");
-
- const Mat<eT> C = A*B;
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) )
- {
- if((A_n_cols == 1) || (B_n_cols == 1))
- {
- arma_extra_debug_print("trans_A = true; trans_B = false; vector result");
-
- const Mat<eT> C = trans(A)*B;
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) )
- {
- if((A_n_rows == 1) || (B_n_rows == 1))
- {
- arma_extra_debug_print("trans_A = false; trans_B = true; vector result");
-
- const Mat<eT> C = A*trans(B);
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) )
- {
- if((A_n_cols == 1) || (B_n_rows == 1))
- {
- arma_extra_debug_print("trans_A = true; trans_B = true; vector result");
-
- const Mat<eT> C = trans(A)*trans(B);
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
-
- // if we got to this point, the multiplication results in a matrix
- const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out));
-
- Mat<eT> tmp;
- Mat<eT>& out = (is_alias) ? tmp : actual_out;
-
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
- {
- arma_extra_debug_print("trans_A = false; trans_B = false; matrix result");
-
- out.zeros(A_n_rows, B_n_cols);
-
- const uword N = (std::min)(A_n_rows, B_n_cols);
-
- for(uword k=0; k < N; ++k)
- {
- eT acc1 = eT(0);
- eT acc2 = eT(0);
-
- const eT* B_colptr = B.colptr(k);
-
- // condition: A_n_cols = B_n_rows
-
- uword j;
-
- for(j=1; j < A_n_cols; j+=2)
- {
- const uword i = (j-1);
-
- const eT tmp_i = B_colptr[i];
- const eT tmp_j = B_colptr[j];
-
- acc1 += A.at(k, i) * tmp_i;
- acc2 += A.at(k, j) * tmp_j;
- }
-
- const uword i = (j-1);
-
- if(i < A_n_cols)
- {
- acc1 += A.at(k, i) * B_colptr[i];
- }
-
- const eT acc = acc1 + acc2;
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) )
- {
- arma_extra_debug_print("trans_A = true; trans_B = false; matrix result");
-
- out.zeros(A_n_cols, B_n_cols);
-
- const uword N = (std::min)(A_n_cols, B_n_cols);
-
- for(uword k=0; k < N; ++k)
- {
- const eT* A_colptr = A.colptr(k);
- const eT* B_colptr = B.colptr(k);
-
- // condition: A_n_rows = B_n_rows
-
- const eT acc = op_dot::direct_dot(A_n_rows, A_colptr, B_colptr);
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) )
- {
- arma_extra_debug_print("trans_A = false; trans_B = true; matrix result");
-
- out.zeros(A_n_rows, B_n_rows);
-
- const uword N = (std::min)(A_n_rows, B_n_rows);
-
- for(uword k=0; k < N; ++k)
- {
- eT acc = eT(0);
-
- // condition: A_n_cols = B_n_cols
-
- for(uword i=0; i < A_n_cols; ++i)
- {
- acc += A.at(k,i) * B.at(k,i);
- }
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) )
- {
- arma_extra_debug_print("trans_A = true; trans_B = true; matrix result");
-
- out.zeros(A_n_cols, B_n_rows);
-
- const uword N = (std::min)(A_n_cols, B_n_rows);
-
- for(uword k=0; k < N; ++k)
- {
- eT acc = eT(0);
-
- const eT* A_colptr = A.colptr(k);
-
- // condition: A_n_rows = B_n_cols
-
- for(uword i=0; i < A_n_rows; ++i)
- {
- acc += A_colptr[i] * B.at(k,i);
- }
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
-
- if(is_alias) { actual_out.steal_mem(tmp); }
- }
- template<typename T1, typename T2>
- inline
- void
- op_diagmat::apply_times(Mat<typename T1::elem_type>& actual_out, const T1& X, const T2& Y, const typename arma_cx_only<typename T1::elem_type>::result* junk)
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- typedef typename T1::pod_type T;
- typedef typename T1::elem_type eT;
-
- const partial_unwrap<T1> UA(X);
- const partial_unwrap<T2> UB(Y);
-
- const typename partial_unwrap<T1>::stored_type& A = UA.M;
- const typename partial_unwrap<T2>::stored_type& B = UB.M;
-
- arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
-
- const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times;
- const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0);
-
- const uword A_n_rows = A.n_rows;
- const uword A_n_cols = A.n_cols;
-
- const uword B_n_rows = B.n_rows;
- const uword B_n_cols = B.n_cols;
-
- // check if the multiplication results in a vector
-
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
- {
- if((A_n_rows == 1) || (B_n_cols == 1))
- {
- arma_extra_debug_print("trans_A = false; trans_B = false; vector result");
-
- const Mat<eT> C = A*B;
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) )
- {
- if((A_n_cols == 1) || (B_n_cols == 1))
- {
- arma_extra_debug_print("trans_A = true; trans_B = false; vector result");
-
- const Mat<eT> C = trans(A)*B;
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) )
- {
- if((A_n_rows == 1) || (B_n_rows == 1))
- {
- arma_extra_debug_print("trans_A = false; trans_B = true; vector result");
-
- const Mat<eT> C = A*trans(B);
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) )
- {
- if((A_n_cols == 1) || (B_n_rows == 1))
- {
- arma_extra_debug_print("trans_A = true; trans_B = true; vector result");
-
- const Mat<eT> C = trans(A)*trans(B);
- const eT* C_mem = C.memptr();
- const uword N = C.n_elem;
-
- actual_out.zeros(N,N);
-
- for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
-
- return;
- }
- }
-
- // if we got to this point, the multiplication results in a matrix
- const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out));
-
- Mat<eT> tmp;
- Mat<eT>& out = (is_alias) ? tmp : actual_out;
-
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
- {
- arma_extra_debug_print("trans_A = false; trans_B = false; matrix result");
-
- out.zeros(A_n_rows, B_n_cols);
-
- const uword N = (std::min)(A_n_rows, B_n_cols);
-
- for(uword k=0; k < N; ++k)
- {
- T acc_real = T(0);
- T acc_imag = T(0);
-
- const eT* B_colptr = B.colptr(k);
-
- // condition: A_n_cols = B_n_rows
-
- for(uword i=0; i < A_n_cols; ++i)
- {
- // acc += A.at(k, i) * B_colptr[i];
-
- const std::complex<T>& xx = A.at(k, i);
- const std::complex<T>& yy = B_colptr[i];
-
- const T a = xx.real();
- const T b = xx.imag();
-
- const T c = yy.real();
- const T d = yy.imag();
-
- acc_real += (a*c) - (b*d);
- acc_imag += (a*d) + (b*c);
- }
-
- const eT acc = std::complex<T>(acc_real, acc_imag);
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == false) )
- {
- arma_extra_debug_print("trans_A = true; trans_B = false; matrix result");
-
- out.zeros(A_n_cols, B_n_cols);
-
- const uword N = (std::min)(A_n_cols, B_n_cols);
-
- for(uword k=0; k < N; ++k)
- {
- T acc_real = T(0);
- T acc_imag = T(0);
-
- const eT* A_colptr = A.colptr(k);
- const eT* B_colptr = B.colptr(k);
-
- // condition: A_n_rows = B_n_rows
-
- for(uword i=0; i < A_n_rows; ++i)
- {
- // acc += std::conj(A_colptr[i]) * B_colptr[i];
-
- const std::complex<T>& xx = A_colptr[i];
- const std::complex<T>& yy = B_colptr[i];
-
- const T a = xx.real();
- const T b = xx.imag();
-
- const T c = yy.real();
- const T d = yy.imag();
-
- // take into account the complex conjugate of xx
-
- acc_real += (a*c) + (b*d);
- acc_imag += (a*d) - (b*c);
- }
-
- const eT acc = std::complex<T>(acc_real, acc_imag);
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true) )
- {
- arma_extra_debug_print("trans_A = false; trans_B = true; matrix result");
-
- out.zeros(A_n_rows, B_n_rows);
-
- const uword N = (std::min)(A_n_rows, B_n_rows);
-
- for(uword k=0; k < N; ++k)
- {
- T acc_real = T(0);
- T acc_imag = T(0);
-
- // condition: A_n_cols = B_n_cols
-
- for(uword i=0; i < A_n_cols; ++i)
- {
- // acc += A.at(k,i) * std::conj(B.at(k,i));
-
- const std::complex<T>& xx = A.at(k, i);
- const std::complex<T>& yy = B.at(k, i);
-
- const T a = xx.real();
- const T b = xx.imag();
-
- const T c = yy.real();
- const T d = -yy.imag(); // take the conjugate
-
- acc_real += (a*c) - (b*d);
- acc_imag += (a*d) + (b*c);
- }
-
- const eT acc = std::complex<T>(acc_real, acc_imag);
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
- else
- if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == true) )
- {
- arma_extra_debug_print("trans_A = true; trans_B = true; matrix result");
-
- out.zeros(A_n_cols, B_n_rows);
-
- const uword N = (std::min)(A_n_cols, B_n_rows);
-
- for(uword k=0; k < N; ++k)
- {
- T acc_real = T(0);
- T acc_imag = T(0);
-
- const eT* A_colptr = A.colptr(k);
-
- // condition: A_n_rows = B_n_cols
-
- for(uword i=0; i < A_n_rows; ++i)
- {
- // acc += std::conj(A_colptr[i]) * std::conj(B.at(k,i));
-
- const std::complex<T>& xx = A_colptr[i];
- const std::complex<T>& yy = B.at(k, i);
-
- const T a = xx.real();
- const T b = -xx.imag(); // take the conjugate
-
- const T c = yy.real();
- const T d = -yy.imag(); // take the conjugate
-
- acc_real += (a*c) - (b*d);
- acc_imag += (a*d) + (b*c);
- }
-
- const eT acc = std::complex<T>(acc_real, acc_imag);
-
- out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
- }
- }
-
- if(is_alias) { actual_out.steal_mem(tmp); }
- }
- //
- //
- //
- template<typename T1>
- inline
- void
- op_diagmat2::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagmat2>& X)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
-
- const uword row_offset = X.aux_uword_a;
- const uword col_offset = X.aux_uword_b;
-
- const Proxy<T1> P(X.m);
-
- if(P.is_alias(out))
- {
- Mat<eT> tmp;
-
- op_diagmat2::apply(tmp, P, row_offset, col_offset);
-
- out.steal_mem(tmp);
- }
- else
- {
- op_diagmat2::apply(out, P, row_offset, col_offset);
- }
- }
- template<typename T1>
- inline
- void
- op_diagmat2::apply(Mat<typename T1::elem_type>& out, const Proxy<T1>& P, const uword row_offset, const uword col_offset)
- {
- arma_extra_debug_sigprint();
-
- const uword n_rows = P.get_n_rows();
- const uword n_cols = P.get_n_cols();
- const uword n_elem = P.get_n_elem();
-
- if(n_elem == 0) { out.reset(); return; }
-
- const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1);
-
- if(P_is_vec)
- {
- const uword n_pad = (std::max)(row_offset, col_offset);
-
- out.zeros(n_elem + n_pad, n_elem + n_pad);
-
- if(Proxy<T1>::use_at == false)
- {
- typename Proxy<T1>::ea_type Pea = P.get_ea();
-
- for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = Pea[i]; }
- }
- else
- {
- if(n_rows == 1)
- {
- for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(0,i); }
- }
- else
- {
- for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(i,0); }
- }
- }
- }
- else // P represents a matrix
- {
- arma_debug_check
- (
- ((row_offset > 0) && (row_offset >= n_rows)) || ((col_offset > 0) && (col_offset >= n_cols)),
- "diagmat(): requested diagonal out of bounds"
- );
-
- out.zeros(n_rows, n_cols);
-
- const uword N = (std::min)(n_rows - row_offset, n_cols - col_offset);
-
- for(uword i=0; i<N; ++i)
- {
- const uword row = i + row_offset;
- const uword col = i + col_offset;
-
- out.at(row,col) = P.at(row,col);
- }
- }
- }
- //! @}
|