123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- namespace newarp
- {
- //! This class implements the eigen solver for real symmetric matrices.
- template<typename eT, int SelectionRule, typename OpType>
- class SymEigsSolver
- {
- protected:
- const OpType& op; // object to conduct matrix operation, e.g. matrix-vector product
- const uword nev; // number of eigenvalues requested
- Col<eT> ritz_val; // ritz values
- // Sort the first nev Ritz pairs in decreasing magnitude order
- // This is used to return the final results
- virtual void sort_ritzpair();
- private:
- const uword dim_n; // dimension of matrix A
- const uword ncv; // number of ritz values
- uword nmatop; // number of matrix operations called
- uword niter; // number of restarting iterations
- Mat<eT> fac_V; // V matrix in the Arnoldi factorisation
- Mat<eT> fac_H; // H matrix in the Arnoldi factorisation
- Col<eT> fac_f; // residual in the Arnoldi factorisation
- Mat<eT> ritz_vec; // ritz vectors
- Col<eT> ritz_est; // last row of ritz_vec
- std::vector<bool> ritz_conv; // indicator of the convergence of ritz values
- const eT eps; // the machine precision
- // e.g. ~= 1e-16 for double type
- const eT approx0; // a number that is approximately zero
- // approx0 = eps^(2/3)
- // used to test the orthogonality of vectors,
- // and in convergence test, tol*approx0 is
- // the absolute tolerance
- // Arnoldi factorisation starting from step-k
- inline void factorise_from(uword from_k, uword to_m, const Col<eT>& fk);
- // Implicitly restarted Arnoldi factorisation
- inline void restart(uword k);
- // Calculate the number of converged Ritz values
- inline uword num_converged(eT tol);
- // Return the adjusted nev for restarting
- inline uword nev_adjusted(uword nconv);
- // Retrieve and sort ritz values and ritz vectors
- inline void retrieve_ritzpair();
- public:
- //! Constructor to create a solver object.
- inline SymEigsSolver(const OpType& op_, uword nev_, uword ncv_);
- //! Providing the initial residual vector for the algorithm.
- inline void init(eT* init_resid);
- //! Providing a random initial residual vector.
- inline void init();
- //! Conducting the major computation procedure.
- inline uword compute(uword maxit = 1000, eT tol = 1e-10);
- //! Returning the number of iterations used in the computation.
- inline uword num_iterations() { return niter; }
- //! Returning the number of matrix operations used in the computation.
- inline uword num_operations() { return nmatop; }
- //! Returning the converged eigenvalues.
- inline Col<eT> eigenvalues();
- //! Returning the eigenvectors associated with the converged eigenvalues.
- inline Mat<eT> eigenvectors(uword nvec);
- //! Returning all converged eigenvectors.
- inline Mat<eT> eigenvectors() { return eigenvectors(nev); }
- };
- } // namespace newarp
|