123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- namespace newarp
- {
- template<typename eT, int SelectionRule, typename OpType>
- inline
- void
- GenEigsSolver<eT, SelectionRule, OpType>::factorise_from(uword from_k, uword to_m, const Col<eT>& fk)
- {
- arma_extra_debug_sigprint();
-
- if(to_m <= from_k) { return; }
- fac_f = fk;
- Col<eT> w(dim_n);
- eT beta = norm(fac_f);
- // Keep the upperleft k x k submatrix of H and set other elements to 0
- fac_H.tail_cols(ncv - from_k).zeros();
- fac_H.submat(span(from_k, ncv - 1), span(0, from_k - 1)).zeros();
- for(uword i = from_k; i <= to_m - 1; i++)
- {
- bool restart = false;
- // If beta = 0, then the next V is not full rank
- // We need to generate a new residual vector that is orthogonal
- // to the current V, which we call a restart
- if(beta < eps)
- {
- // Generate new random vector for fac_f
- blas_int idist = 2;
- blas_int iseed[4] = {1, 3, 5, 7};
- iseed[0] = (i + 100) % 4095;
- blas_int n = dim_n;
- lapack::larnv(&idist, &iseed[0], &n, fac_f.memptr());
- // f <- f - V * V' * f, so that f is orthogonal to V
- Mat<eT> Vs(fac_V.memptr(), dim_n, i, false); // First i columns
- Col<eT> Vf = Vs.t() * fac_f;
- fac_f -= Vs * Vf;
- // beta <- ||f||
- beta = norm(fac_f);
- restart = true;
- }
- // v <- f / ||f||
- fac_V.col(i) = fac_f / beta; // The (i+1)-th column
- // Note that H[i+1, i] equals to the unrestarted beta
- if(restart) { fac_H(i, i - 1) = 0.0; } else { fac_H(i, i - 1) = beta; }
- // w <- A * v, v = fac_V.col(i)
- op.perform_op(fac_V.colptr(i), w.memptr());
- nmatop++;
- // First i+1 columns of V
- Mat<eT> Vs(fac_V.memptr(), dim_n, i + 1, false);
- // h = fac_H(0:i, i)
- Col<eT> h(fac_H.colptr(i), i + 1, false);
- // h <- V' * w
- h = Vs.t() * w;
- // f <- w - V * h
- fac_f = w - Vs * h;
- beta = norm(fac_f);
- if(beta > 0.717 * norm(h)) { continue; }
- // f/||f|| is going to be the next column of V, so we need to test
- // whether V' * (f/||f||) ~= 0
- Col<eT> Vf = Vs.t() * fac_f;
- // If not, iteratively correct the residual
- uword count = 0;
- while(count < 5 && abs(Vf).max() > approx0 * beta)
- {
- // f <- f - V * Vf
- fac_f -= Vs * Vf;
- // h <- h + Vf
- h += Vf;
- // beta <- ||f||
- beta = norm(fac_f);
- Vf = Vs.t() * fac_f;
- count++;
- }
- }
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- void
- GenEigsSolver<eT, SelectionRule, OpType>::restart(uword k)
- {
- arma_extra_debug_sigprint();
-
- if(k >= ncv) { return; }
- DoubleShiftQR<eT> decomp_ds(ncv);
- UpperHessenbergQR<eT> decomp;
-
- Mat<eT> Q(ncv, ncv, fill::eye);
- for(uword i = k; i < ncv; i++)
- {
- if(cx_attrib::is_complex(ritz_val(i), eT(0)) && (i < (ncv - 1)) && cx_attrib::is_conj(ritz_val(i), ritz_val(i + 1), eT(0)))
- {
- // H - mu * I = Q1 * R1
- // H <- R1 * Q1 + mu * I = Q1' * H * Q1
- // H - conj(mu) * I = Q2 * R2
- // H <- R2 * Q2 + conj(mu) * I = Q2' * H * Q2
- //
- // (H - mu * I) * (H - conj(mu) * I) = Q1 * Q2 * R2 * R1 = Q * R
- eT s = 2 * ritz_val(i).real();
- eT t = std::norm(ritz_val(i));
- decomp_ds.compute(fac_H, s, t);
- // Q -> Q * Qi
- decomp_ds.apply_YQ(Q);
- // H -> Q'HQ
- fac_H = decomp_ds.matrix_QtHQ();
- i++;
- }
- else
- {
- // QR decomposition of H - mu * I, mu is real
- fac_H.diag() -= ritz_val(i).real();
- decomp.compute(fac_H);
- // Q -> Q * Qi
- decomp.apply_YQ(Q);
- // H -> Q'HQ = RQ + mu * I
- fac_H = decomp.matrix_RQ();
- fac_H.diag() += ritz_val(i).real();
- }
- }
- // V -> VQ
- // Q has some elements being zero
- // The first (ncv - k + i) elements of the i-th column of Q are non-zero
- Mat<eT> Vs(dim_n, k + 1);
- uword nnz;
- for(uword i = 0; i < k; i++)
- {
- nnz = ncv - k + i + 1;
- Mat<eT> V(fac_V.memptr(), dim_n, nnz, false);
- Col<eT> q(Q.colptr(i), nnz, false);
- Col<eT> v(Vs.colptr(i), dim_n, false);
- v = V * q;
- }
-
- Vs.col(k) = fac_V * Q.col(k);
- fac_V.head_cols(k + 1) = Vs;
- Col<eT> fk = fac_f * Q(ncv - 1, k - 1) + fac_V.col(k) * fac_H(k, k - 1);
- factorise_from(k, ncv, fk);
- retrieve_ritzpair();
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- uword
- GenEigsSolver<eT, SelectionRule, OpType>::num_converged(eT tol)
- {
- arma_extra_debug_sigprint();
-
- // thresh = tol * max(prec, abs(theta)), theta for ritz value
- const eT f_norm = arma::norm(fac_f);
- for(uword i = 0; i < nev; i++)
- {
- eT thresh = tol * std::max(approx0, std::abs(ritz_val(i)));
- eT resid = std::abs(ritz_est(i)) * f_norm;
- ritz_conv[i] = (resid < thresh);
- }
- return std::count(ritz_conv.begin(), ritz_conv.end(), true);
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- uword
- GenEigsSolver<eT, SelectionRule, OpType>::nev_adjusted(uword nconv)
- {
- arma_extra_debug_sigprint();
-
- uword nev_new = nev;
- for(uword i = nev; i < ncv; i++)
- {
- if(std::abs(ritz_est(i)) < eps) { nev_new++; }
- }
- // Adjust nev_new again, according to dnaup2.f line 660~674 in ARPACK
- nev_new += std::min(nconv, (ncv - nev_new) / 2);
- if(nev_new == 1 && ncv >= 6)
- {
- nev_new = ncv / 2;
- }
- else
- if(nev_new == 1 && ncv > 3)
- {
- nev_new = 2;
- }
- if(nev_new > ncv - 2) { nev_new = ncv - 2; }
- // Increase nev by one if ritz_val[nev - 1] and
- // ritz_val[nev] are conjugate pairs
- if(cx_attrib::is_complex(ritz_val(nev_new - 1), eps) && cx_attrib::is_conj(ritz_val(nev_new - 1), ritz_val(nev_new), eps))
- {
- nev_new++;
- }
- return nev_new;
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- void
- GenEigsSolver<eT, SelectionRule, OpType>::retrieve_ritzpair()
- {
- arma_extra_debug_sigprint();
-
- UpperHessenbergEigen<eT> decomp(fac_H);
-
- Col< std::complex<eT> > evals = decomp.eigenvalues();
- Mat< std::complex<eT> > evecs = decomp.eigenvectors();
-
- SortEigenvalue< std::complex<eT>, SelectionRule > sorting(evals.memptr(), evals.n_elem);
- std::vector<uword> ind = sorting.index();
-
- // Copy the ritz values and vectors to ritz_val and ritz_vec, respectively
- for(uword i = 0; i < ncv; i++)
- {
- ritz_val(i) = evals(ind[i]);
- ritz_est(i) = evecs(ncv - 1, ind[i]);
- }
- for(uword i = 0; i < nev; i++)
- {
- ritz_vec.col(i) = evecs.col(ind[i]);
- }
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- void
- GenEigsSolver<eT, SelectionRule, OpType>::sort_ritzpair()
- {
- arma_extra_debug_sigprint();
-
- // SortEigenvalue< std::complex<eT>, EigsSelect::LARGEST_MAGN > sorting(ritz_val.memptr(), nev);
-
- // sort Ritz values according to SelectionRule, to be consistent with ARPACK
- SortEigenvalue< std::complex<eT>, SelectionRule > sorting(ritz_val.memptr(), nev);
-
- std::vector<uword> ind = sorting.index();
-
- Col< std::complex<eT> > new_ritz_val(ncv);
- Mat< std::complex<eT> > new_ritz_vec(ncv, nev);
- std::vector<bool> new_ritz_conv(nev);
-
- for(uword i = 0; i < nev; i++)
- {
- new_ritz_val(i) = ritz_val(ind[i]);
- new_ritz_vec.col(i) = ritz_vec.col(ind[i]);
- new_ritz_conv[i] = ritz_conv[ind[i]];
- }
-
- ritz_val.swap(new_ritz_val);
- ritz_vec.swap(new_ritz_vec);
- ritz_conv.swap(new_ritz_conv);
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- GenEigsSolver<eT, SelectionRule, OpType>::GenEigsSolver(const OpType& op_, uword nev_, uword ncv_)
- : op(op_)
- , nev(nev_)
- , dim_n(op.n_rows)
- , ncv(ncv_ > dim_n ? dim_n : ncv_)
- , nmatop(0)
- , niter(0)
- , eps(std::numeric_limits<eT>::epsilon())
- , approx0(std::pow(eps, eT(2.0) / 3))
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (nev_ < 1 || nev_ > dim_n - 2), "newarp::GenEigsSolver: nev must satisfy 1 <= nev <= n - 2, n is the size of matrix" );
- arma_debug_check( (ncv_ < nev_ + 2 || ncv_ > dim_n), "newarp::GenEigsSolver: ncv must satisfy nev + 2 <= ncv <= n, n is the size of matrix" );
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- void
- GenEigsSolver<eT, SelectionRule, OpType>::init(eT* init_resid)
- {
- arma_extra_debug_sigprint();
-
- // Reset all matrices/vectors to zero
- fac_V.zeros(dim_n, ncv);
- fac_H.zeros(ncv, ncv);
- fac_f.zeros(dim_n);
- ritz_val.zeros(ncv);
- ritz_vec.zeros(ncv, nev);
- ritz_est.zeros(ncv);
- ritz_conv.assign(nev, false);
- nmatop = 0;
- niter = 0;
- Col<eT> r(init_resid, dim_n, false);
- // The first column of fac_V
- Col<eT> v(fac_V.colptr(0), dim_n, false);
- eT rnorm = norm(r);
- arma_check( (rnorm < eps), "newarp::GenEigsSolver::init(): initial residual vector cannot be zero" );
- v = r / rnorm;
- Col<eT> w(dim_n);
- op.perform_op(v.memptr(), w.memptr());
- nmatop++;
- fac_H(0, 0) = dot(v, w);
- fac_f = w - v * fac_H(0, 0);
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- void
- GenEigsSolver<eT, SelectionRule, OpType>::init()
- {
- arma_extra_debug_sigprint();
-
- podarray<eT> init_resid(dim_n);
- blas_int idist = 2; // Uniform(-1, 1)
- blas_int iseed[4] = {1, 3, 5, 7}; // Fixed random seed
- blas_int n = dim_n;
- lapack::larnv(&idist, &iseed[0], &n, init_resid.memptr());
- init(init_resid.memptr());
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- uword
- GenEigsSolver<eT, SelectionRule, OpType>::compute(uword maxit, eT tol)
- {
- arma_extra_debug_sigprint();
-
- // The m-step Arnoldi factorisation
- factorise_from(1, ncv, fac_f);
- retrieve_ritzpair();
- // Restarting
- uword i, nconv = 0, nev_adj;
- for(i = 0; i < maxit; i++)
- {
- nconv = num_converged(tol);
- if(nconv >= nev) { break; }
- nev_adj = nev_adjusted(nconv);
- restart(nev_adj);
- }
- // Sorting results
- sort_ritzpair();
- niter = i + 1;
- return std::min(nev, nconv);
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- Col< std::complex<eT> >
- GenEigsSolver<eT, SelectionRule, OpType>::eigenvalues()
- {
- arma_extra_debug_sigprint();
-
- uword nconv = std::count(ritz_conv.begin(), ritz_conv.end(), true);
- Col< std::complex<eT> > res(nconv);
-
- if(nconv > 0)
- {
- uword j = 0;
- for(uword i = 0; i < nev; i++)
- {
- if(ritz_conv[i])
- {
- res(j) = ritz_val(i);
- j++;
- }
- }
- }
-
- return res;
- }
- template<typename eT, int SelectionRule, typename OpType>
- inline
- Mat< std::complex<eT> >
- GenEigsSolver<eT, SelectionRule, OpType>::eigenvectors(uword nvec)
- {
- arma_extra_debug_sigprint();
-
- uword nconv = std::count(ritz_conv.begin(), ritz_conv.end(), true);
- nvec = std::min(nvec, nconv);
- Mat< std::complex<eT> > res(dim_n, nvec);
-
- if(nvec > 0)
- {
- Mat< std::complex<eT> > ritz_vec_conv(ncv, nvec);
- uword j = 0;
- for(uword i = 0; (i < nev) && (j < nvec); i++)
- {
- if(ritz_conv[i])
- {
- ritz_vec_conv.col(j) = ritz_vec.col(i);
- j++;
- }
- }
-
- res = fac_V * ritz_vec_conv;
- }
-
- return res;
- }
- } // namespace newarp
|