123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- namespace newarp
- {
- template<typename eT>
- inline
- void
- DoubleShiftQR<eT>::compute_reflector(const eT& x1, const eT& x2, const eT& x3, uword ind)
- {
- arma_extra_debug_sigprint();
-
- // In general case the reflector affects 3 rows
- ref_nr(ind) = 3;
- eT x2x3 = eT(0);
- // If x3 is zero, decrease nr by 1
- if(std::abs(x3) < prec)
- {
- // If x2 is also zero, nr will be 1, and we can exit this function
- if(std::abs(x2) < prec)
- {
- ref_nr(ind) = 1;
- return;
- }
- else
- {
- ref_nr(ind) = 2;
- }
- x2x3 = std::abs(x2);
- }
- else
- {
- x2x3 = arma_hypot(x2, x3);
- }
- // x1' = x1 - rho * ||x||
- // rho = -sign(x1), if x1 == 0, we choose rho = 1
- eT x1_new = x1 - ((x1 <= 0) - (x1 > 0)) * arma_hypot(x1, x2x3);
- eT x_norm = arma_hypot(x1_new, x2x3);
- // Double check the norm of new x
- if(x_norm < prec)
- {
- ref_nr(ind) = 1;
- return;
- }
- ref_u(0, ind) = x1_new / x_norm;
- ref_u(1, ind) = x2 / x_norm;
- ref_u(2, ind) = x3 / x_norm;
- }
- template<typename eT>
- arma_inline
- void
- DoubleShiftQR<eT>::compute_reflector(const eT* x, uword ind)
- {
- arma_extra_debug_sigprint();
-
- compute_reflector(x[0], x[1], x[2], ind);
- }
- template<typename eT>
- inline
- void
- DoubleShiftQR<eT>::update_block(uword il, uword iu)
- {
- arma_extra_debug_sigprint();
-
- // Block size
- uword bsize = iu - il + 1;
- // If block size == 1, there is no need to apply reflectors
- if(bsize == 1)
- {
- ref_nr(il) = 1;
- return;
- }
- // For block size == 2, do a Givens rotation on M = X * X - s * X + t * I
- if(bsize == 2)
- {
- // m00 = x00 * (x00 - s) + x01 * x10 + t
- eT m00 = mat_H(il, il) * (mat_H(il, il) - shift_s) +
- mat_H(il, il + 1) * mat_H(il + 1, il) +
- shift_t;
- // m10 = x10 * (x00 + x11 - s)
- eT m10 = mat_H(il + 1, il) * (mat_H(il, il) + mat_H(il + 1, il + 1) - shift_s);
- // This causes nr=2
- compute_reflector(m00, m10, 0, il);
- // Apply the reflector to X
- apply_PX(mat_H, il, il, 2, n - il, il);
- apply_XP(mat_H, 0, il, il + 2, 2, il);
- ref_nr(il + 1) = 1;
- return;
- }
- // For block size >=3, use the regular strategy
- eT m00 = mat_H(il, il) * (mat_H(il, il) - shift_s) +
- mat_H(il, il + 1) * mat_H(il + 1, il) +
- shift_t;
- eT m10 = mat_H(il + 1, il) * (mat_H(il, il) + mat_H(il + 1, il + 1) - shift_s);
- // m20 = x21 * x10
- eT m20 = mat_H(il + 2, il + 1) * mat_H(il + 1, il);
- compute_reflector(m00, m10, m20, il);
- // Apply the first reflector
- apply_PX(mat_H, il, il, 3, n - il, il);
- apply_XP(mat_H, 0, il, il + std::min(bsize, uword(4)), 3, il);
- // Calculate the following reflectors
- // If entering this loop, block size is at least 4.
- for(uword i = 1; i < bsize - 2; i++)
- {
- compute_reflector(mat_H.colptr(il + i - 1) + il + i, il + i);
- // Apply the reflector to X
- apply_PX(mat_H, il + i, il + i - 1, 3, n + 1 - il - i, il + i);
- apply_XP(mat_H, 0, il + i, il + std::min(bsize, uword(i + 4)), 3, il + i);
- }
- // The last reflector
- // This causes nr=2
- compute_reflector(mat_H(iu - 1, iu - 2), mat_H(iu, iu - 2), 0, iu - 1);
- // Apply the reflector to X
- apply_PX(mat_H, iu - 1, iu - 2, 2, n + 2 - iu, iu - 1);
- apply_XP(mat_H, 0, iu - 1, il + bsize, 2, iu - 1);
- ref_nr(iu) = 1;
- }
- template<typename eT>
- inline
- void
- DoubleShiftQR<eT>::apply_PX(Mat<eT>& X, uword oi, uword oj, uword nrow, uword ncol, uword u_ind)
- {
- arma_extra_debug_sigprint();
-
- if(ref_nr(u_ind) == 1) { return; }
- // Householder reflectors at index u_ind
- Col<eT> u(ref_u.colptr(u_ind), 3, false);
- const uword stride = X.n_rows;
- const eT u0_2 = 2 * u(0);
- const eT u1_2 = 2 * u(1);
- eT* xptr = &X(oi, oj);
- if(ref_nr(u_ind) == 2 || nrow == 2)
- {
- for(uword i = 0; i < ncol; i++, xptr += stride)
- {
- eT tmp = u0_2 * xptr[0] + u1_2 * xptr[1];
- xptr[0] -= tmp * u(0);
- xptr[1] -= tmp * u(1);
- }
- }
- else
- {
- const eT u2_2 = 2 * u(2);
- for(uword i = 0; i < ncol; i++, xptr += stride)
- {
- eT tmp = u0_2 * xptr[0] + u1_2 * xptr[1] + u2_2 * xptr[2];
- xptr[0] -= tmp * u(0);
- xptr[1] -= tmp * u(1);
- xptr[2] -= tmp * u(2);
- }
- }
- }
- template<typename eT>
- inline
- void
- DoubleShiftQR<eT>::apply_PX(eT* x, uword u_ind)
- {
- arma_extra_debug_sigprint();
-
- if(ref_nr(u_ind) == 1) { return; }
- eT u0 = ref_u(0, u_ind),
- u1 = ref_u(1, u_ind),
- u2 = ref_u(2, u_ind);
- // When the reflector only contains two elements, u2 has been set to zero
- bool nr_is_2 = (ref_nr(u_ind) == 2);
- eT dot2 = x[0] * u0 + x[1] * u1 + (nr_is_2 ? 0 : (x[2] * u2));
- dot2 *= 2;
- x[0] -= dot2 * u0;
- x[1] -= dot2 * u1;
- if(!nr_is_2) { x[2] -= dot2 * u2; }
- }
- template<typename eT>
- inline
- void
- DoubleShiftQR<eT>::apply_XP(Mat<eT>& X, uword oi, uword oj, uword nrow, uword ncol, uword u_ind)
- {
- arma_extra_debug_sigprint();
-
- if(ref_nr(u_ind) == 1) { return; }
- // Householder reflectors at index u_ind
- Col<eT> u(ref_u.colptr(u_ind), 3, false);
- uword stride = X.n_rows;
- const eT u0_2 = 2 * u(0);
- const eT u1_2 = 2 * u(1);
- eT* X0 = &X(oi, oj);
- eT* X1 = X0 + stride; // X0 => X(oi, oj), X1 => X(oi, oj + 1)
- if(ref_nr(u_ind) == 2 || ncol == 2)
- {
- // tmp = 2 * u0 * X0 + 2 * u1 * X1
- // X0 => X0 - u0 * tmp
- // X1 => X1 - u1 * tmp
- for(uword i = 0; i < nrow; i++)
- {
- eT tmp = u0_2 * X0[i] + u1_2 * X1[i];
- X0[i] -= tmp * u(0);
- X1[i] -= tmp * u(1);
- }
- }
- else
- {
- eT* X2 = X1 + stride; // X2 => X(oi, oj + 2)
- const eT u2_2 = 2 * u(2);
- for(uword i = 0; i < nrow; i++)
- {
- eT tmp = u0_2 * X0[i] + u1_2 * X1[i] + u2_2 * X2[i];
- X0[i] -= tmp * u(0);
- X1[i] -= tmp * u(1);
- X2[i] -= tmp * u(2);
- }
- }
- }
- template<typename eT>
- inline
- DoubleShiftQR<eT>::DoubleShiftQR(uword size)
- : n(size)
- , prec(std::numeric_limits<eT>::epsilon())
- , eps_rel(prec)
- , eps_abs(prec)
- , computed(false)
- {
- arma_extra_debug_sigprint();
- }
- template<typename eT>
- inline
- DoubleShiftQR<eT>::DoubleShiftQR(const Mat<eT>& mat_obj, eT s, eT t)
- : n(mat_obj.n_rows)
- , mat_H(n, n)
- , shift_s(s)
- , shift_t(t)
- , ref_u(3, n)
- , ref_nr(n)
- , prec(std::numeric_limits<eT>::epsilon())
- , eps_rel(prec)
- , eps_abs(prec)
- , computed(false)
- {
- arma_extra_debug_sigprint();
-
- compute(mat_obj, s, t);
- }
- template<typename eT>
- void
- DoubleShiftQR<eT>::compute(const Mat<eT>& mat_obj, eT s, eT t)
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (mat_obj.is_square() == false), "newarp::DoubleShiftQR::compute(): matrix must be square" );
- n = mat_obj.n_rows;
- mat_H.set_size(n, n);
- shift_s = s;
- shift_t = t;
- ref_u.set_size(3, n);
- ref_nr.set_size(n);
- // Make a copy of mat_obj
- mat_H = mat_obj;
- // Obtain the indices of zero elements in the subdiagonal,
- // so that H can be divided into several blocks
- std::vector<uword> zero_ind;
- zero_ind.reserve(n - 1);
- zero_ind.push_back(0);
- eT* Hii = mat_H.memptr();
- for(uword i = 0; i < n - 2; i++, Hii += (n + 1))
- {
- // Hii[1] => mat_H(i + 1, i)
- const eT h = std::abs(Hii[1]);
- if(h <= eps_abs || h <= eps_rel * (std::abs(Hii[0]) + std::abs(Hii[n + 1])))
- {
- Hii[1] = 0;
- zero_ind.push_back(i + 1);
- }
- // Make sure mat_H is upper Hessenberg
- // Zero the elements below mat_H(i + 1, i)
- std::fill(Hii + 2, Hii + n - i, eT(0));
- }
- zero_ind.push_back(n);
- for(std::vector<uword>::size_type i = 0; i < zero_ind.size() - 1; i++)
- {
- uword start = zero_ind[i];
- uword end = zero_ind[i + 1] - 1;
- // Compute refelctors from each block X
- update_block(start, end);
- }
- computed = true;
- }
- template<typename eT>
- Mat<eT>
- DoubleShiftQR<eT>::matrix_QtHQ()
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (computed == false), "newarp::DoubleShiftQR::matrix_QtHQ(): need to call compute() first" );
- return mat_H;
- }
- template<typename eT>
- inline
- void
- DoubleShiftQR<eT>::apply_QtY(Col<eT>& y)
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (computed == false), "newarp::DoubleShiftQR::apply_QtY(): need to call compute() first" );
- eT* y_ptr = y.memptr();
- for(uword i = 0; i < n - 1; i++, y_ptr++)
- {
- apply_PX(y_ptr, i);
- }
- }
- template<typename eT>
- inline
- void
- DoubleShiftQR<eT>::apply_YQ(Mat<eT>& Y)
- {
- arma_extra_debug_sigprint();
-
- arma_debug_check( (computed == false), "newarp::DoubleShiftQR::apply_YQ(): need to call compute() first" );
- uword nrow = Y.n_rows;
- for(uword i = 0; i < n - 2; i++)
- {
- apply_XP(Y, 0, i, nrow, 3, i);
- }
-
- apply_XP(Y, 0, n - 2, nrow, 2, n - 2);
- }
- } // namespace newarp
|